Simulation

Electronics Response

Definition of chi²

Summary

Pulse Shape Discrimination Studies

of Phase I Ge-detectors

Andrea Kirsch MPI für Kernphysik

DPG Frühjahrstagung @ Dresden — March 4, 2013

Motivation

Simulation

Definition of chi²

6

Results

Summary

Simulation

Electronics Response

Definition of chi²

Results

Summary

GERDA Experiment

Simulation

Electronics Response

Definition of chi²

Results

Summary

GERDA Experiment

Simulation

Electronics Response

Definition of chi²

Results

Summary

GERDA Experiment

Simulation

Electronics Response

Definition of chi²

Results

Summary

GERDA Experiment

Simulation

Electronics Response

Definition of chi²

Results

Summary

GERDA Experiment

Simulation

Electronics Response

Definition of chi²

Results

Summary

PSD Concept

Simulation

Electronics Response

Definition of chi²

Results

Summary

PSD Concept

Simulation

Electronics Response

Definition of chi²

Results

Summary

PSD Concept

Definition of chi²

Results _____

Summary

PSD in GERDA so far...

... is based on A/E parameter cut.

[Pulse Shape Discrimination for Broad Energy Germanium Detectors — by H. Liao, HK 7.4]

[Application of A/E PSD method to first ⁷⁶Ge enr BEGe detectors operated in GERDA — by A. Lazzaro, HK 66.6]

[PSA of Enriched BEGe Detectors in Vacuum Cryostat and Liquid Argon — by V. Wagner, T 110.2]

(Simulation)

Electronics Response

Definition of chi²

Results

Summary

Simulation

simulated electrical field strength $\left[V/cm\right]$ for a vertical section of the Phase I detectors passing through the symmetry axis

ADL 3.0	software	of AGATA
---------	----------	----------

[Computational Studies for BEGe

Detectors — by M. Salathe, HK 7.3]

- create pulse shape library
- geometries & dimensions of detectors implemented
- impurity concentrations
 - \rightarrow are known for BEGe's
 - \rightarrow determined for HPGe's by using depletion voltage
- MC performed for applied operation voltage
- set of SSE for 1 mm grid
 - \rightarrow question of computing time

Definition of chi²

Results

Summary

Electronics Response

... MC doesn't consider exp. electronic setup ...

- measurement of rectangular pulser for GERDA detectors
- fast rise times of $\leqslant 15~{\rm ns}$
 - \rightarrow (input)' = delta function
 - \rightarrow (output)' = impulse response
- convolution of simulation x[n]and impulse response h[n]gives realistic pulse shape y[n]

Definition of chi²

Results

Summary

Electronics Response

... MC doesn't consider exp. electronic setup ...

- measurement of rectangular pulser for GERDA detectors
- fast rise times of $\leqslant 15~{\rm ns}$
 - \rightarrow (input)' = delta function \rightarrow (output)' = impulse response
- convolution of simulation x[n]and impulse response h[n]gives realistic pulse shape y[n]

 $\boxed{ \begin{array}{c} \label{eq:posterior} \text{Def: convolution summation '*'} \\ \hline \\ y[i] = \sum_{j=0}^{M-1} h[j]x[i-j], \\ \text{if } x[n] \text{ is an } N \text{ point signal} \\ \text{running from } 0 \text{ to } N-1 \text{ and} \end{array} }$

if h[n] is an M point signal running from 0 to M - 1

6 / 10

(Electronics Response)

Definition of chi²

Results

Summary

Electronics Response

... MC doesn't consider exp. electronic setup ...

- measurement of rectangular pulser for GERDA detectors
- fast rise times of $\leqslant 15~{\rm ns}$

 \rightarrow (input)' = delta function \rightarrow (output)' = impulse response

 convolution of simulation x[n] and impulse response h[n] gives realistic pulse shape y[n]

Def: convolution summation '*' $y[i] = \sum_{j=0}^{M-1} h[j]x[i-j],$

if x[n] is an N point signal running from 0 to N-1 and if h[n] is an M point signal running from 0 to M-1

simulated pulse shapes after convolution with impulse response

(Definition of chi²

Results

Summary

7 / 10

Definition of chi²

- measurements are compared with pulse shape library resulting from simulations
- shift in time: center of gravitiy amplitude adjustment: energy of pulse
 → avoid computing time consuming fitting procedures
- width of investigated window = when pulse has decreased to 1/25-th of the maximum amplitude
 - \rightarrow compromise between keeping structure of the signal and not including noise
- calculate difference for each sample i

 $chi^2 = \sum (data[i] - simulation[i])^2$

• smallest chi² out of library is chosen

(Definition of chi²

Summary

Definition of chi²

- measurements are compared with pulse shape library resulting from simulations
- shift in time: center of gravitiy amplitude adjustment: energy of pulse
 → avoid computing time consuming fitting procedures
- width of investigated window = when pulse has decreased to 1/25-th of the maximum amplitude
 - \rightarrow compromise between keeping structure of the signal and not including noise
- calculate difference for each sample *i*

 $chi^2 = \sum (data[i] - simulation[i])^2$

• smallest chi² out of library is chosen

Definition of chi²

(Results)

Summary

Comparison

Definition of chi²

(Results)

Summary

Comparison

Summary

Cut Efficency of chi²

able of acceptances [%]				
	calibration			
detector	FEP	SEP		
	²¹² Bi	$^{228}{ m Th}$	ROI	
ANG2	78 ± 2	71 ± 1	81 ± 1	
ANG3	71 ± 2	63 ± 1	77 ± 1	
ANG4	53 ± 2	52 ± 1	68 ± 1	
ANG5	51 ± 1	45 ± 1	64 ± 1	
RG1	61 ± 3	57 ± 1	72 ± 1	
RG2	66 ± 2	62 ± 1	75 ± 1	
GTF112	54 ± 1	50 ± 1	69 ± 1	

- fixed survival fraction of 90% @ DEP
- in future: optimization on S/\sqrt{B}
- whole data set of Phase I so far

Definition of chi²

(Results)

Summary

Cut Efficency of chi²

table of accept	otances [%]	chi² c			
	calibration			background	
detector	FEP	SEP			
	²¹² Bi	$^{228}{ m Th}$	ROI	ROI	e en
ANG2	78±2	71 ± 1	81±1	78±39	
ANG3	71 ± 2	63 ± 1	77 ± 1	68 ± 25	
ANG4	53 ± 2	52 ± 1	68 ± 1	67 ± 27	0.5 1 Lie Energy [MeV]
ANG5	51 ± 1	45 ± 1	64 ± 1	50 ± 18	
RG1	61 ± 3	57 <u>±</u> 1	72 ± 1	78 ± 28	accepta (50 ± 18
RG2	66 ± 2	62 ± 1	75 ± 1	74 ± 26	blinded
GTF112	54 ± 1	50 ± 1	69 ± 1	61 ± 16	kev

- fixed survival fraction of 90% @ DEP
- in future: optimization on S/\sqrt{B} 0
- whole data set of Phase I so far

9 / 10

wotivatio	n Simulation	Electronics Response	Definition of chi	Results	Summary
C	Conclusion				
	nanium EGe's)				
• composition of Phase I setup: 3.6 kg (BEGe) \Leftrightarrow 17.7 kg (HPGe)					
 PSD technique for this detector type helpful to improve understanding of data and sensitivity of Phase I 					
	 ansatz based on was developed a 	simulated pulse shape and tested on real GER	library of SSE and c DA calibration / bac	hi ² matching kground data	
	background sup	pression efficencies @ F	ROI around Q_{etaeta} seer	n promising	
C	Jutlook				

- drawback: not as effective as A/E parameter cut on BEGe detectors, further testing / debugging / improving of chi² method
- search for other parameters to characterize signal shape properties, start multi variant analysis with data mining...