

A background veto system for GERDA based on scintillation of liquid argon

Nuno Barros for the GERDA collaboration

Institut für Kern- und Teilchenphysik Technische Universität Dresden

DPG Frühjahrstagung, March 4, 2013

- $2\nu\beta\beta:(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu_e}$
 - Predicted by the SM
 - Observed in more than 10 isotopes
- $0\nu\beta\beta:(A,Z) \rightarrow (A,Z+2) + 2e^- + 0\overline{\nu_e}$
 - ΔL = 2
 - One claim and many limits...
 - $\left[T_{1/2}^{0\nu}\right]^{-1} = F^{0\nu} \cdot \left|M^{0\nu}\right|^2 \cdot m_{\beta\beta}^2$

$$T_{1/2}^{0
u} pprox \sqrt{rac{M\cdot t}{B\cdot \Delta E}}$$

- **M** mass of the isotope
- **t** time
- **B** background
- ΔE energy resolution

Ways to improve sensitivity

- More mass
- Better energy resolution
- Longer measurement
- Lower background

Phase I

- Check existing claim with HPGe
 - Exposure : ~20 kg yr
 - BI : 2.43 x 10⁻² cts/(keV kg yr)

Phase II

- Expand sensitivity with enriched BEGe (+20 kg)
 - Exposure : ~100 kg yr
 - **BI**: \leq 1.0 x 10⁻³ cts/(keV kg yr)

Background reduction in the ROI around $Q_{\beta\beta}$ crucial for GERDA objectives

Double beta decay in Ge:

 $2\nu\beta\beta: {}^{76}Ge \rightarrow {}^{76}Se + 2e^{-} + 2\nu$ $0\nu\beta\beta: {}^{76}Ge \rightarrow {}^{76}Se + 2e^{-}$

A. Caldwell et al. Phys. Rev. D 74 (2006) 092003

Reducing the background in GERDA

- Background index (BI)
 - present (Phase I) : 2.43 x 10⁻² cts/(keV kg yr)
 - aspired (Phase II) : $\leq 1.0 \times 10^{-3} \text{ cts/(keV kg yr)}$
- Employed background suppression techniques:
 - Water Cherenkov veto (muons)
 - Detector anti-coincidence
 - Pulse shape discrimination (PSD)

LAr scintillation veto

 Tag background events by detecting light from scintillation of argon

- ββ-event
 - Single site event (energy deposited in a single crystal)
 - Not vetoed

TECHNISCHE UNIVERSITAT Background suppression in GERDA

- ββ-event
 - Single site event (energy deposited in a single point)
 - Not vetoed
- Surface event (²¹⁴Bi, ⁴²K)
 - Often not vetoed by LAr instrumentation
 - High veto efficiency from PSD

Cૠ Background suppression in GERDA

- ββ-event
 - Not vetoed
- Surface event (²¹⁴Bi, ⁴²K)
 - Often not vetoed by LAr instrumentation
- External event (²⁰⁸Tl, ²¹⁴Bi)
 - Energy deposited in multiple crystals
 - Detector anti-coincidence veto

SCHE Background suppression in GERDA

- ββ-event
 - Not vetoed
- Surface event (²¹⁴Bi, ⁴²K)
 - Often not vetoed by LAr instrumentation
- External event (²⁰⁸Tl, ²¹⁴Bi)
 - Energy deposited in multiple crystals
 - Detector anti-coincidence veto
 - Multi site events
 - PSD veto

Background suppression in GERDA

- ββ-event
 - Not vetoed
- Surface event (²¹⁴Bi, ⁴²K)
 - Often not vetoed by LAr instrumentation
- External event (²⁰⁸TI, ²¹⁴Bi)
 - Energy deposited in multiple crystals
 - Detector anti-coincidence veto
 - Multi site events
 - PSD veto
 - Energy deposited both in the detector and in the surrounding LAr
 - Often vetoed by LAr instrumentation

Events in ROI around 2039 keV

LAr veto efficiency highly dependent of background type.

- Advantages:
 - Very high light yield : \sim 4 x 10⁴ γ /MeV
 - Single re-emission peak: $\lambda = 128$ nm (XUV)
 - Very distinctive short and long decay times
 - T_s~6 ns
 - T₁~ 1200 1500 ns
- Challenges:
 - Hard to measure optical properties
 - Very dependent on impurities
 - Light cannot be detected directly (XUV)
 - Need to use WLS

energy [ke∨]

- Suppression factor at $Q_{\beta\beta} \pm 35 keV$
 - LAr veto : ~1200 •

counts [#]

energy [ke∨]

- Suppression factor at $Q_{\beta\beta} \pm 35 \text{keV}$
 - LAr veto : ~1200
 - PSD : ~2.4
 - LAr + PSD: ~5200

TECHNISCHE UNIVERSITÄT DRESDEN

LArGe : suppression of internal ²²⁶Ra

- Suppression factor at $Q_{\beta\beta} \pm 35 \text{keV}$
 - LAr veto : ~4.6
 - PSD : ~4.1
 - LAr + PSD: ~45

Demonstrated by LArGe:

- Concept works
- Complementarity with PSD
- Efficient background suppression for select backgrounds

Energy in Ge for internal ²²⁸Th source LArGe results used to validate MC LArGe data (no veto) model 10^{7} MC data (no veto) 10^{6} Simpler geometry LArGe data (after veto) 10^{5} MC data (after veto) Measurements available 10^{4} 10^{3} **Tuning of optical properties:** 10^{2} Material reflectivities 10 • Cu, Ge, teflon,... 1 LAr properties: 10^{-1} 05 1.5 2.5 3 1 Energy [MeV] Attenuation length, light yield, • Background LArGe data MC triplet lifetime WLS properties 208TI 1180 ± 250 909 ± 235 Absorption and re-emission 3.8 ± 0.1 ²¹⁴Bi 4.6 ± 0.2 spectra 60Co 27 + 1.7 16.1 ± 1.3 **External Sources**

208TI

²¹⁴Bi

25 + 12

 3.2 ± 0.2

Unknown accurate source geometry affects fraction of escaped betas.

17.2 + 1.6

 3.2 ± 0.4

- Combination of technologies for maximized veto efficiency.
 - PMTs (as verified in LArGe)
 - Scintillation fibers [T 109.2].

Requirements

- Large instrumented volume
- Low background contribution
 - After self-veto
- Low mass
 - Instrumentation deployed with Ge crystals

Breakdown of the designs

PMTs

- Proven technology (LArGe)
- Low background contribution
 - Clean PMTs
 - Distance from the crystals

Scintillating fibers

- Sensitive LAr volume not confined
- High solid angle coverage
- Low background contribution
 - Can afford to place fibers closer to detectors

opening for

Cu and reflector

surface

PMT module top gimbal-mounted to cable chain calibration sources

Custom made voltage dividers

18 low background PMTs

9 x R11065-10

9 x R11065-20

- Encapsulation to prevent discharges/flashing
- Tight control on weight of setup
 - Share same cable chain as detectors

Screening results

- ²²⁸Th : ≤ 1.94 mBq/PMT
- ²²⁶Ra : ≤ 1.7 mBq/PMT

- Intensive tests of all parts
 - Tight control of background
- Run in test stand with in MPIK
 - 4 PMTs with negative voltage dividers
 - So far no flashing occurred

PMT support successfully tested

test stand at MPIK

rs [T 109.2]

- Fibers coated with TPB
 - Fibers themselves are WLS
- Large solid angle coverage maximizes detection efficiency
 - Does not penalize PMTs

BCF-WLS

• Extensive MC simulation campaign of designs:

- Implemented in MaGe
 - GERDA simulation software based on Geant4
- Tuned with LArGe data
- Two-fold objective:
 - Initial comparison of technologies
 - Optimization of geometries (detectors and instrumentation)
- Simulation details:
 - Simulation of known nuclear decays in detector parts
 - LAr, detector holders, LAr instrumentation, Ge crystals
 - Most relevant simulated decays: ²¹⁴Bi, ²⁰⁸TI
 - Photon tracking only if event deposits energy in Ge inside the ROI
 - Performance optimization

²¹⁴Bi in detector holders ²⁰⁸TI in detector holders Counts/keV 10⁵ Vounts/keV 10^₅ Raw Raw After AC After AC After AC+LAr After AC+LAr 10⁴ 10⁴ 10^{3} 10³ 10² 10² 10 10 1 10⁻¹ 10⁻¹ 500 1000 1500 2500 500 1000 1500 2000 3000 2000 2500 3000 E [keV] E [keV]

$SF = \frac{\text{total events in ROI}}{\text{unvetoed events in ROI}}$

- ROI : $Q_{\beta\beta} \pm 100 \text{ keV}$
 - Same window used to determine the BI.

	Location	SF	
²⁰⁸ TI	holders	320 ± 34	
	external	112 ± 39	
²¹⁴ Bi	surface	3.5 ± 0.1	
	holders	10.3 ± 0.3	
	homogeneous in LAr	54.8 ± 7.9	
Sources simulated in earlier designs (approximate values)			
⁶⁰ Co	detectors	10	
⁴² K	homogeneous in LAr	10	
	crystal surface	1	

- Simulation campaign was iterative process
 - Designs evolved/improved with results from simulations

- Some parameters hard to measure
 - Literature values used
 - Systematic studies of their effect performed

Systematic	SF
Nominal	10.3 ± 0.3
0.2 * Attenuation	8.9 ± 0.3
0.1 * Reflectivity	9.4 ± 0.3

- Attenuation of XUV light
 - Absorption highly dependent on purity of LAr
 - Literature value : 60 cm [NIM A 384 (1997)]
 - Major systematic uncertainty
- Reflectivity of materials
 - Measurements in visible range performed at MPIK
 - Literature values used for XUV range

Global suppression slightly reduced

TECHNISCHE UNIVERSITÄT DRESDEN

MC simulations : systematics studies (II)

- Effect in p.e. yield more clear
 •Attenuation: Reduction of p.e. yield of factor ~2
 - •**Reflectivity :** Elimination of high p.e. tails.
 - Reflectivity has small effect in the simulations.

- Effect of increased attenuation highly dependent on p.e. threshold
 - Other systematics not so critical
- Purity of argon and threshold of instrumentation critical for its efficiency

- A LAr scintillation veto is planned for phase II of GERDA
 - Principle demonstrated in LArGe
- Favored design of combination of PMTs and scintillating fibers
 - Hardware tests ongoing
 - Both technologies demonstrated on smaller scale
 - Construction has started
- Extensive MC simulation campaign performed
 - Used LArGe results for validation and tuning
 - Provided optimizations to the hardware designs.
- LAr veto suppression factors look promising:
 - > 10^2 for ²²⁸Th (~300 close by, ~100 far from detectors)
 - ~ 10 for nearby 226 Rn backgrounds
- Instrumentation induced BI within allowed budget
 - Counting self-veto