# A liquid Argon scintillation veto for the $\operatorname{GERDA}$ experiment

#### Anne Wegmann for the $\operatorname{GERDA}$ collaboration

Max-Planck Institut für Kernphysik

DPG Frühjahrstagung, 04.03.2013





Light instrumentation of GERDA

## The $\operatorname{GERDA}$ experiment



## The $\operatorname{GERDA}$ experiment



Anne Wegmann (MPIK)

LAr veto for GERDA

## Background rejection in $\operatorname{GERDA}$

#### Sensitivity to the lower limit of the half life scale of $0\nu\beta\beta$ decay

$$T_{1/2}\propto\epsilon a\sqrt{rac{Mt}{BI\Delta(E)}}$$

 $\begin{array}{l} \epsilon: \mbox{ detection efficiency,} \\ a: \mbox{ abundance of $^{76}$Ge} \\ Mt: \mbox{ exposure [kg yr],} \\ Bl: \mbox{ background index [cts/(keV kg yr]],} \\ \Delta(E): \mbox{ energy resolution in ROI at $Q_{\beta\beta}$} \end{array}$ 

#### currently running:

- start: november 2011 planned end: summer 2013
- detector mass:  $M_{\text{coaxial}} = 17.7 \text{ kg}$  $M_{\text{BEGe}} = 3.6 \text{ kg}$
- energy resolution @ 2.6 MeV:  $\Delta E_{\text{coaxial}} \approx 4.5 \text{ keV}$  $\Delta E_{\text{BEGe}} \approx 3.0 \text{ keV}$
- BI  $\approx 2.4(3) \cdot 10^{-2} \operatorname{cts}/(\operatorname{keV kg yr})$

#### Phasell

- additional 20 kg of enr Ge detectors (BEGe)
- cleaner and lighter detector holders, cables, ...

aspired BI  $\leq 10^{-3} \, \mathrm{cts}/(\mathrm{keV \, kg \, yr})$ 

- ⇒ active background suppression methods are needed [T 109.4]
  - detector anticoincidence
  - water cherenkov veto
  - pulse shape analysis [T 110.2, HK 66.6]
  - > LAr scintillation veto will be installed

## LAr scintillation veto for background suppression

How does an active LAr veto work?

- e surface beta (Bi214, K42) → often not vetoed by LAr veto (→ PSD)
- $\mathbf{0} \gamma$  background events in ROI (Bi214, Tl208)
  - $\rightarrow$  can be vetoed
    - energy deposition in multiple crystals
       → detector anticoincidence veto
    - Multisite event
      - $\rightarrow$  pulse shape discrimination veto
    - energy deposition inside the crystal and in LAr

 $\Rightarrow$  create scintillation light @  $\lambda = 128\,\mathrm{nm}$ 

 $\Rightarrow$  can be used as anticoincidence veto



## LArGe - a test facility for $\operatorname{GERDA}$

Experimental verification





Suppression factors at  $Q_{\beta\beta} \pm 35 \, {\rm keV}$ : LAr  $\approx 1200$ ; PSD  $\approx 2.4$ 

## LArGe - a test facility for $\operatorname{GERDA}$

Monte Carlo validation & tuning of optical parameters





measurements available



LArGe data

 $1180 \pm 250$ 

 $4.6 \pm 0.2$ 

27 + 2

 $25 \pm 1.2$ 

 $3.2 \pm 0.2$ 

internal

external

Bg

TI208

Bi214

Co60

TI208

Bi214

- Tuning of optical properties
  - material reflectivities (Ge, Cu, VM2000, ...)
  - absorption and emission spectra
  - LAr attenuation length, light yield and triplet lifetime
- good MC description after tuning

MC

 $909 \pm 235$ 

 $3.8 \pm 0.1$ 

 $16.1 \pm 1.3$ 

 $17.2 \pm 1.6$ 

 $3.2 \pm 0.4$ 

## Light instrumentation for $\operatorname{GERDA}$

"Hybrid" LAr veto design

- result of MC simulation optimization campaign
- uses combination of PMTs and scintillation fibers to read-out the scintillation light [T109.2]

#### Requirements on light instrumentation

- big instrumented volume
- low instrumentation induced background index
  - > Photomultiplier
  - Wavelength shifting fibers
  - wavelength shifting and reflective foil
- applicable without LAr drainage



## "Hybrid" LAr veto design

#### Photomultiplier

- type: 3 " R 11065-10/-20
- 9\* top, 7\* bottom

#### Scintillating fibers [T 109.2]

- build the middle shroud
- type: BCF-91A coated with TPB
- light readout at upper end by SiPMs

#### Copper shroud + reflective foil

- Tetratex coated with TPB [HK 46.8]
- installed on inner side of copper shrouds



#### LAr veto for $\operatorname{GERDA}$





## Photomultiplier - Hardware



| screening | results<br>Th228 | [mBq/pc]<br>Ra226 |
|-----------|------------------|-------------------|
| PMT *     | < 1.94           | < 1.7             |
| VD        | < 0.5            | < 1.14            |

\* calculated from component screening currently screening of 6 R11065-10 PMTs

#### Teststand





## R11065-20 has higher QE than R11065-10



#### peak-to-valley:



- test of up to 10 PMTs in LAr
- light yield measurements
- gain measurements

#### LAr veto for $\operatorname{GERDA}$

## "Hybrid" LAr veto design - MC simulations



#### suppression factors

|                | Holders                      | Surface     | Homogenous     | External |  |
|----------------|------------------------------|-------------|----------------|----------|--|
| Bi214<br>T/208 | ${}^{10.3\pm0.3}_{320\pm34}$ | $3.5\pm0.1$ | $54.8 \pm 7.9$ |          |  |

## "Hybrid" LAr veto design - MC simulations

#### Systematics studies

• changed attenuation for XUV light and metal reflectivities dramatically

|                  | Baseline     | Attenuation * 0.2 | Reflectivity * 0.1 |
|------------------|--------------|-------------------|--------------------|
| Bi214 in holders | $10.3\pm0.3$ | $8.9\pm0.3$       | 9.4 ± 0.3          |

⇒ LAr veto gives still good suppression factors but p.e. yield drops



### "Hybrid" LAr veto design

Instrumentation induced BI [cts/(keV kg yr)]

| background source                          |                         | Activity                                        | BI w/o LAr veto                                                      | BI with LAr veto *                                                   |
|--------------------------------------------|-------------------------|-------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| PMTs + VD                                  | Th228<br>Ra226          | $<2.44\mathrm{mBq/PMT} \\<2.84\mathrm{mBq/PMT}$ | $< 3.1(1) * 10^{-4} < 5.5(2) * 10^{-5}$                              | $< 3.1(5) * 10^{-6} < 2.7(5) * 10^{-6}$                              |
| cable                                      | Th228<br>Ra226          | $< 14.4  \mu { m Bq/m} \ < 11.2  \mu { m Bq/m}$ | $< 2.4(1) * 10^{-4} < 3.9(1) * 10^{-5}$                              | $< 7.0(2) * 10^{-6} < 5.5(2) * 10^{-6}$                              |
| top & bottom shroud<br>(Tetratex & copper) | Th228<br>Ra226          | $< 103\mu{\rm Bq/m}^2 \\< 282\mu{\rm Bq/m}^2$   | $< 2.7(1) * 10^{-5} < 1.2(1) * 10^{-5}$                              | $< 9.9(5) * 10^{-7} < 1.5(1) * 10^{-6}$                              |
| sum                                        | Th228<br>Ra226<br>total |                                                 | $< 5.8(1) * 10^{-4}$<br>$< 1.1(1) * 10^{-4}$<br>$< 6.8(1) * 10^{-4}$ | $< 1.1(1) * 10^{-5}$<br>$< 9.8(6) * 10^{-6}$<br>$< 2.1(1) * 10^{-5}$ |

\* determined with older geometry, will improve a bit

## Summary

- Installation of LAr scintillation veto is planned for Phasell of GERDA
- Hybrid design using scintillating fibers and PMTs is the baseline option
  - hardware tests are ongoing
  - construction has started
- extensive MC simulation campaign performed
  - used LArGe for validation and tuning
  - provided optimizations to the hardware design
- LAr veto suppression factors look promising:
  - ightarrow  $> 10^2$  for Th228 (pprox 300 close by, pprox 100 far from detectors)
  - ightarrow pprox 10 for nearby Ra226 background source
- Instrumentation induced BI within the budget

# Thanks for your attention !

Veto efficiencies for different background sources are estimated by Monte Carlo simulations

- MaGe (Geant4) based simulation of nuclear decays
- If event passes cuts on energy deposition in the Ge crystals, optical photons created in the LAr are propagated. Otherwise event is discarded
  - > photons are tracked inside the wls fiber
  - green shifted photons in the fiber can reach the PMTs
- reflectivity and surface roughness of the surrounding materials are implemented