

GERDA status report

Mark Heisel for the GERDA collaboration

DPG Frühjahrstagung, Dresden 2013, HK 43.2

GERDA at Gran Sasso

Mark Heisel, DPG Frühjahrstagung, Dresden 2013

GERDA history (1)

building watertank

5 May '08

earthquake

6 April '09

05/03/2013

Mark Heisel, DPG Frühjahrstagung, Dresden 2013

GERDA history (2)

4

Germanium Detector Array

Double Beta Decay detection in GERDA

GERDA Phase I detectors

- 8 refurbished diodes from HdM & IGEX
- 2 detectors shut off due to high leakage current
 → mass of operational detectors 14.2 kg (~87% active mass)
- 1 natural Ge detector (GTF)

Duty cycle & exposure

start phase I: November 9, 2011

~90%

- total exposure: (until January 11, 2013)
- 13.65 kg·yr ^{enr}Ge (+1.51 kg·yr with BEGe) 4.69 kg·yr ^{nat}Ge
- duty factor:

Detector performance

²²⁸<u>Th calibration every 1-2 weeks:</u>

- energy resolution: 4.5 keV at $Q_{_{\beta\beta}}$ (mass weighted average)
- ► stable gain within 1 keV at Q_{BB}

Phase I background spectrum

▶ since January 11, 2012: automatic blinding at Q_{BB} (2039 ± 20) keV

▶ no pulse shape discrimination (PSD) applied so far

Mark Heisel, DPG Frühjahrstagung, Dresden 2013

⁴²K background

⁴²Ar activity used for proposal: measured in Gerda: <41 µBq/kg @90% CL (93.0 ± 6.4) µBq/kg

[Barabash et al.,2002] (preliminary result)

- ► background enhanced by collection of ⁴²K ions via E-field
- ► therefore: E-field & convection free configuration in 'mini-shroud'

32.9 y

Alpha background

alpha event rates are different for individual detectors

MC suggest ²¹⁰Po contamination on p+ contact or groove

$$T_{1/2}^{2\nu} = (1.84^{+0.09}_{-0.08 \text{ fit } -0.06 \text{ syst}}) \cdot 10^{21} \text{ yr} = (1.84^{+0.14}_{-0.10}) \cdot 10^{21} \text{ yr}$$

[J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110]

Mark Heisel, DPG Frühjahrstagung, Dresden 2013

Summary GERDA Phase I

- collected exposure to date:
- ► achieved background index: 2.4 x 10⁻² cts/(keV·kg·yr)
- halflife $T_{1/2}$ of $2\nu\beta\beta$:
- unblinding & completion of phase I by mid 2013

Plans for GERDA Phase II

- ► collect total exposure: 100 kg·yr
 - → produce ~20 kg more detectors
- ► aspired background index: 1 x 10⁻³ cts/(keV·kg·yr)
 - → use improved detector support & electronics
 - → use active background suppression

13.65 kg·yr

(1.84^{+0.14}_{-0.10}) x 10²¹ yr

BEGe detectors & pulse shape discrimination

Example of BEGe detector: resolution: <u>1.59 keV</u> FWHM @1.33 MeV

800 accept powerful Pulse Shape Discrimination (PSD): Amplitude [a.u.] single-site $(0v\beta\beta-like)$ 5500 228Th all events A 5000 after PSD cut -4500 Number of counts 4000 **DEP:** γ -bgd: 3500 0 90% 11% 500 -500 0 1000 1500 3000 800 2500 multi-site Amplitude [a.u.] 2000 Sieck 600 (background like) 1500 1000 400 500 Α 0 200 1580 1600 1620 1640 1560 Energy [keV] 0 -500 500 1000 1500 0 [see HK 66.6] Time after trigger [ns]

Phase II diode production completed

 30 enriched BEGe detectors (~20.5 kg) were produced & successfully tested in the HEROICA test facility

2012: diode production at Canberra Olen, Belgium & acceptance tests in HEROICA test facility

2011/12: Crystal pulling & cutting at Canberra, Oak Ridge, USA

05/03/2013

total mass: 3.6 kg

Liquid argon scintillation veto R&D

source	position	suppression factor		
		LAr veto	PSD	total
⁶⁰ Co	int	27 ± 1.7	76 ± 8.7	3900 ± 1300
²²⁶ Ra	ext	3.2 ± 0.2	4.4 ± 0.4	18 ± 3
	int	4.6 ± 0.2	4.1 ± 0.2	45 ± 5
²²⁸ Th	ext	25 ± 1.2	2.8 ± 0.1	129 ± 15
	int	1180 ± 250	2.4 ± 0.1	5200 ± 1300

at Gran Sasso

Liquid argon light instrumentation for GERDA

9x 3" PMT

Cu shroud & wavelength-shifter

Ge detectors

scintillating fibres & SiPM read-out

Cu shroud & wavelength-shifter

7x 3" PMT

MC optimization campaign completed
 hardware is beeing tested & prepared

[see T 109.1/HK 22.1]

GERDA $0\nu\beta\beta$ sensitivity projection

Conclusions & outlook ...

Phase I

- ► collected exposure to date: 13.65 kg·yr
- achieved background index:
- ► halflife $T_{1/2}^{2\nu}$ of $2\nu\beta\beta$:
- unblinding & completion of phase I by mid 2013

Phase II

 ▶ goals: exposure: 100 kg·yr background index: 1 x 10⁻³ cts/(keV·kg·yr)
 ► ~20.5 kg BEGe detectors produced & tested (5 are operating in GERDA)
 ▶ active bgr suppression: superior pulse shape discrimination

 $2.4 \times 10^{-2} \text{ cts/(keV·kg·yr)}$

(1.84^{+0.14}_{-0.10}) x 10²¹ yr

- install LAr light instrumentation as veto
- use improved detector support & electronics

GERDA $0\nu\beta\beta$ sensitivity projection

Background composition in $2\nu\beta\beta$ fit

Background composition in $2\nu\beta\beta$ fit

