GERDA Status Report

Matteo Agostini* on behalf of the GERDA Collaboration

*) Physik-Department E15, Technische Universität München, Germany

DPG Spring Meeting, Dresden, Mar 4-8 2013

Outline

Double beta decay

The Gerda experiment

Gerda Phase I: status and first results

Double beta decay Outline

Double beta decay

The Gerda experiment

Gerda Phase I: status and first results

Double beta decay Theoretical aspects

Second order nuclear transitions \rightarrow decay of two neutrons into two protons:

- $(A, Z) \rightarrow (A, Z+2) + 2e^{-}$
- lepton number violation ($\Delta L = 2$)
- physics beyond the standard model (e.g. right-handed weak currents, super-symmetric particles...)
- ν majorana mass component (Schechter-Valle theorem)
- ${\cal T}_{1/2}^{\,0
 u}$ limits in the range $10^{21}-10^{25}\,{
 m yr}$
- one unconfirmed claim (subset of HdM experiment)

Double beta decay Neutrinoless double beta decay & neutrino physics

Assuming light-majorana neutrino exchange as dominant $0\nu\beta\beta$ channel:

Many implications:

- $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |\mathcal{M}_{0\nu}(A, Z)|^2 \langle m_{\beta\beta} \rangle^2$
- effective majorana mass: $\langle m_{etaeta}
 angle \equiv \left| \sum_i U_{ei}^2 m_i \right|$
- neutrino oscillations: 3 angles, 2 delta mass squared, 1 phase
- $0\nu\beta\beta$ mass spectrum (inverted/normal hierarchy, absolute mass scale)

Matteo Agostini (TUM)

Double beta decay Experimental aspects of $0\nu\beta\beta$ search in Ge-76

Advantages:

- HPGe detectors can be realized from enriched Ge material (typical enriched to ~87%)
- detectors well established technology
- $\Delta E pprox 0.1\%$ at Q_{etaeta}
- ultra-radiopure material (low background)
- Calirimeter detector —> source=detector \rightarrow high detection efficiency

Disadvantages:

- low Q-value ($Q_{\beta\beta} = 2039 \text{ keV}$) \rightarrow small phase-space factor \rightarrow below TI-208 and Bi-214 gamma-lines
- natural Ge-76 abundance (7.6 %)

Until recently (EXO, Kamland-Zen) best limits from:

- IGEX $T_{1/2}^{0
 u} \geq 1.6\cdot 10^{25}\,\mathrm{yr}$ at 90% C.L.
- HdM $T_{1/2}^{0\nu} \ge 1.9 \cdot 10^{25} \, {\rm yr}$ at 90% C.L.

The Gerda experiment **Outline**

Double beta decay

The Gerda experiment

Gerda Phase I: status and first results

The Gerda experiment The Gerda collaboration

~100 members 18 institutions 6 countries

M. Agostiniⁿ, E. Andreotti^q, A.M. Bakalyarov¹, M. Balata^a, I. Barabanov¹, N. Barros L. Baudis⁷, C. Bauer^J, N. Becerici-Schmidt^m, E. Bellotti^{9,h}, S. Belogurov^{k,j}, S.T. Belvaev^l G. Benato^r, A. Bettini^{o,p}, L. Bezrukov^j, T. Bodeⁿ, V. Brudanin^d, R. Brugnera^{o,p}, D. Budiásⁿ, A. Caldwell^m, C. Cattadori^h, A. Chernogorov^k, F. Cossavella^m, V. D'Andrea^e E.V. Demidova^k, A. Domula^c, V. Ezorov^d, R. Falkenstein^q, K. Freund^q, N. Frodyma^b A. Gangapshev^{j, J}, A. Garfagnini^{o,p}, C. Gotti^{g,b}, P. Grabmayr^q, V. Gurentsov^j, K. Gusev^{1,d}, K.K. Guthikonda^r, W. Hampel^f, A. Hegai^q, M. Heisel^f, S. Hemmer^{o,p} G. Heusser¹, W. Hofmann¹, M. Hult^e, L.V. Inzhechik¹, L. Ioannucci^a, J. Janicskó Csáthy J. Jochum^q, M. Junker^a, T. Kihm^f, I.V. Kirpichnikov^k, A. Kirsch^f, A. Klimenko^{f,d} K.T. Knöpfle¹, O. Kochetov^d, V.N. Kornoukhov^{k,j}, V.V. Kuzminov^j, M. Laubenstein^a, A. Lazzaroⁿ, V.I. Lebedev¹, B. Lebnert^c, H.Y. Liao^m, M. Lindner¹, I. Lippi^p, A. Lubashevskiv^f, B. Lubsandorzhiev^j, G. Lutter^e, C. Macolino^a, B. Majorovits^m W. Maneschuff, G. Marissens^c, I. Nemchenok^d, S. Nisi^a, D. Paleoselitis^m, L. Pandola^a, K. Pelczar^b, G. Pessina^{g,b}, A. Pulliaⁱ, M. Reissfelder^J, S. Riboldiⁱ, N. Rumyantseva^d, C. Sada ^{o,p}, M. Salathe^I, C. Schmitt^q, B. Schneider^c, J. Schreiner^I, O. Schulz^m B. Schwingenheuer^f, S. Schönertⁿ, H. Seitz^m, E. Shevchik^d, M. Shirchenko^{1,d}, H. Simgen^f A. Smolnikov^f, L. Stanco^p, H. Strecker^f, M. Tarka^r, C.A. Ur^p, A.A. Vasenko^k, K. von Sturm^o, V. Wagner^f, M. Walter^r, A. Wegmann^f, T. Wester^e, M. Wojcik^b, E. Yanovich^j P. Zavarise^a, I. Zhitnikov^d, S.V. Zhukov¹, D. Zinatulina^d, K. Zuber^c, and G. Zuzel^b

^a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy ^b) Institute of Physics, Jasiellonian University, Cracow, Poland ^c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany ^d). Joint Institute for Nuclear Research, Dubna, Russia, ⁴) Institute for Reference Materials and Measurements, Geel, Belgium ^f) Max Planck Institut f
ür Kernphysik, Heidelberg, Germany 9) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy ^h) INFN Milano Bicocca, Milano, Italy ⁽⁾ Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy ^j)Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ^k) Institute for Theoretical and Experimental Physics, Moscow, Bussia ⁴) National Research Centre "Kurchatov Institute", Moscow, Russia. ¹⁰) Max-Planck-Institut für Physik, München, Germany ⁿ) Physik Department and Excellence Cluster Universe, Technische Universität München, ^o) Dipartimento di Fisica e Astronomia dell'Università di Padova, Padova, Italy P) INFN Padova, Padova, Italy ⁹) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany ") Physik Institut der Universität Zürich, Zürich, Switzerland

GERDA

Matteo Agostini (TUM)

The Gerda experiment **Goals**

Phasel (Nov 2011 - Spring 2013)

- 8 ^{enr} Ge coaxial detectors from HdM and IGEX experiments (17.7 kg, 86% ⁷⁶Ge)
- \bullet background $10^{-2}\,\text{cts}/(\text{keV}{\cdot}\,\text{kg}{\cdot}\,\text{yr})$ at $Q_{\beta\beta}$
- exposure 20 kg·yr
- sensitivity to scrutinize claim

Phase II (start transition in Summer 2013)

- new custom-made ^{enr} Ge BEGe detectors (additional 20 kg, 87% ⁷⁶Ge)
- background $\lesssim 10^{-3} \text{ cts/(keV} \cdot \text{kg} \cdot \text{yr})$ at $Q_{\beta\beta}$ (active techniques for background suppression)
- exposure $\gtrsim 100 \, \text{kg·y}$
- $\bullet\,$ start the exploration of $\,{\cal T}^{\,0\nu}_{1/2}\,$ in the 10^{26}\,{\rm yr}\, range

Phase III

- Contingent to the outcome of the present generation of $0\nu\beta\beta$ experiments
- collaboration between GERDA and MAJORANA

- background $\lesssim \! 10^{-4} \, \text{cts/(keV} \cdot \text{kg} \cdot \text{yr})$ at $\mathsf{Q}_{\beta\beta}$
- exposure of several 1000 kg·yr

•
$$T_{1/2}^{0
u}\gtrsim 10^{27}\,{
m y}$$

The Gerda experiment Concept: detectors & apparatus

- ▶ Bare detectors in liquid Argon
- ► Shield: high-purity LAr/H₂O

- ▶ Radio-pure material selection
- ► deep underground (LNGS, 3800 m.w.e.)

The Gerda experiment

Backgrounds and mitigation techniques

Background sources:

- natural radioactivity (Th-232 and U-238 decay chain)
- α -emitting isotopes from surface contamination (e.g. Po-210)
- Rn-222 in LAr
- cosmogenic isotopes of Ge decaying inside the detectors (Ge-68, Co-60)
- unstable Ar isotopes (Ar-39,Ar-42)
- $\bullet\,$ non-vetoed $\mu\,$

Mitigation strategy:

- detector anti-coincidence (already used in Phase I)
- time-coincidence (Bi-Po or Ge-68)
- pulse shape analysis (in future)
- LAr-scintillation (only Phase II)

Gerda Phase I: status and first results **Outline**

Double beta decay

The Gerda experiment

Gerda Phase I: status and first results

Gerda Phase I: status and first results **Detector array assembly**

- \blacktriangleright 3 + 1 strings
- ▶ 8 ^{enr}Ge coaxial detectors (2 not considered in the analysis)
- ▶ 3 ^{nat}Ge coaxial detectors
- ▶ 5 ^{enr}Ge BEGe detectors (R&D for Phase II)

^{enr}Ge mass for physics analysis: 14.6 kg (coaxial) + 3.6 kg (BEGe)

Gerda Phase I: status and first results Detector calibration (Th-228)

Gerda Phase I: status and first results **Detector stability**

Gerda Phase I: status and first results Duty cycle (Nov 2011 - Jan 2013)

Matteo Agostini (TUM)

Gerda Phase I: status and first results Integrated exposure

Gerda Phase I: status and first results Main structures in the energy spectrum

Gerda Phase I: status and first results Gamma-line intensities

Gerda Phase I: status and first results Background index in the $Q_{\beta\beta}$ region

Average background index values in $Q_{\beta\beta}\pm100\,\text{keV}$ (excluding central 40 keV):

- $2.2^{+0.3}_{-0.3} \cdot 10^{-2} \operatorname{cts}/(\operatorname{keV} \cdot \operatorname{kg} \cdot \operatorname{yr})$, enr Ge coaxials, 13.6 kg·yr
- $1.7^{+0.3}_{-0.3} \cdot 10^{-2} \text{ cts/(keV kg·yr)}, enr \text{Ge coaxials, } 12.3 \text{ kg·yr} (w/o \text{ run } 34/35, 8\% \text{ exp})$

• $4.1^{+1.5}_{-1.2} \cdot 10^{-2} \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$, ^{enr}Ge BEGe's, 1.5 kg·yr

Previous experiments:

- ► HdM: $BI = 0.17 \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$
- ► IGEX: $BI = 0.17 \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$

Background contributions at $Q_{\beta\beta}$:

- ► γ : TI-208 and Bi-214
- ▶ β: K-42 and Bi-214
- ▶ α: Po-210, Rn-222 chain

Background Model discussed in: T 103.4 (N. Becerici-Schmidt)

Gerda Phase I: status and first results $2\nu\beta\beta$ half-life

Matteo Agostini (TUM)

Gerda Phase I: status and first results $2\nu\beta\beta$ half-life

Matteo Agostini (TUM)

Plan and preparation of Phase II **Outline**

Double beta decay

The Gerda experiment

Gerda Phase I: status and first results

Plan and preparation of Phase II Phase II detectors and liquid argon scintillation

BEGe detectors:

- ▶ excellent energy resolution (1.6 keV @ 1.3 MeV)
- enhanced pulse shape discrimination performance
- ▶ 30 new ^{enr}Ge BEGe detectors produced (20 kg)

LAr-scintillation (combined design):

- Iow-background photo-multipliers
- ► WLS fibers read-out with Si

photo-multipliers

Pulse shape analysis combined with LAr-scintillation (in LArGe setup): measured suppression factor of $(5.2 \pm 1.3) \cdot 10^3$ at $Q_{\beta\beta}$ for close Th-228

Conclusion

- ▶ GERDA Phase I started in Nov 2011
- \blacktriangleright Data taking ongoing —> collected more than 15 kg·yr of exposure
- ► Background order of magnitude lower than previous experiments $\sim 0.02 \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$ at $Q_{\beta\beta}$

► Measured $2\nu\beta\beta$ half-life with a strong reduction of systematic uncertainties with respect to the previous experiments $T_{1/2}^{2\nu} = (1.84^{+0.09}_{-0.08 \text{ fit}} \stackrel{+0.11}{_{-0.06 \text{ syst}}}) \cdot 10^{21}$

▶ Phase I almost complete: data unblinding at 20 kg·yr of exposure. Assuming present background index, expected $0\nu\beta\beta$ sensitivity of $T_{1/2}^{0\nu} \gtrsim 1.9 \cdot 10^{25} \text{ yr} (90\% \text{ C.I.})$

▶ Transition to Phase II in preparation (starting in summer 2013): major upgrade for further reduction of the background to the level of 10^{-3} cts/(keV·kg·yr) at Q_{ββ} (pulse shape analysis with BEGe detectors and LAr instrumentation).