Active Volume studies of depleted and enriched BEGe detectors

Katharina von Sturm

for the GERDA Collaboration

Università degli Studi di Padova DPG spring conference 2013 4.3.2013 11.30h - HK 7.2 - HSZ-401

Broad Energy Germanium detectors

- GERDA is aiming to prove the existence of the $0\nu\beta\beta$ decay
- BEGe chosen as Phase II detector geometry for GERDA
- Point contact diodes \rightarrow improved pulse shape discrimination performance
- Made of ultra pure Germanium (Ge) enriched in ⁷⁶Ge
- Detectors fabricated from depleted material for testing purposes
- Of special importance for GERDA is their Active Volume (AV)

Measurements

- 30 diodes were characterized in the Hades underground laboratory in Belgium
- Diodes have rather different shapes as the aim was to keep as much material as possible

⁶⁰Co AV determination

- AV determination with ⁶⁰Co
- Total count rate at 1173keV and 1333keV is compared to MC
- Peaks are fitted with a Gaussian and an exponential low energy tail
- Depends on gamma attenuation
- Sensitive to the whole detector volume

⁶⁰Co AV determination

- AV determination with ⁶⁰Co
- Total count rate at 1173keV and 1333keV is compared to MC
- Peaks are fitted with a Gaussian and an exponential low energy tail
- Depends on gamma attenuation
- Sensitive to the whole detector volume

AV independent if the fit contains the tail

²²⁸Th AV determination

- AV determination with ²²⁸Th
- Ratios FEP/DEP and SEP/DEP are compared to MC simulation
- Sensitivity smaller than ⁶⁰Co
- Depends only on geometry

²²⁸Th AV determination

RE: 2.04E+04 +1.20E+02

enerav [keV]

- AV determination with ²²⁸Th
- Ratios FEP/DEP and SEP/DEP are compared to MC simulation
- Sensitivity smaller than ⁶⁰Co
- Depends only on geometry

Simulations

- Precise implementation of detector dimensions is crucial for ⁶⁰Co
- Data is post processed for different DL thicknesses

Simulations

• Source distance is a crucial parameter for ²²⁸Th

Results and Uncertainties

- Systematic uncertainties propagate from observable (rate or ratio) to the AV
- Although sensitivity is much smaller ²²⁸Th is a useful additional method due to reduced systematic uncertainties
- ⁶⁰Co results: DL~1(+-0.3)mm \rightarrow AV~90(+-4)%
- ²²⁸Th results sometimes significantly smaller which is a hint for a larger dead layer in the corners

systematic uncertainty	⁶⁰ Co rate	²²⁸ Th ratio
Geant4 physics	4%	2%
detector dimensions	3%	1%
source activity	3%	-
source distance	1.2%	-
detector placement	0.6%	-

Summary

- ⁶⁰Co and ²²⁸Th provide independent methods to probe different volumes inside the detector
- Methods are limited by the model of the Dead Layer on the outer surface → Dead Volume inside the detector will be modeled as Dead Layer on the outer surface
- Large batch of different diodes creates the possibility to look for correlations
- Uncertainty on the AV is already smaller than for the Phase I detectors of about +-5% which is the main systematic uncertainty for the analysis of the $0\nu\beta\beta$ half-life
- See also: R. Falkeinstein T, B. Lehnert T110, V. Wagner T