Results on Neutrinoless Double Beta Decay from GERDA Phase I

Manfred Lindner

(on behalf of the GERDA collaboration)

M. Lindner, MPIK

CERN, Oct. 1, 2013

Outline

- Introduction
- Experimental requirements
- GERDA design and construction
- Phase I run parameters
- Backgrounds
- Pulse shape discrimination
- Results
- Conclusions & Implications

Double Beta Decay Processes

Standard Model:

→ 2 electrons + 2 neutrinos

Double Beta Decay & Mass Parabolas

Double Beta Decay Kinematics

M. Lindner, MPIK

Experimental Challenges

- extremely rare process
- →low statistics = few counts/bin
- known (unknown?) nuclear lines
- tail of $2\nu\beta\beta$ signal
- backgrounds
- signal at known $Q_{\beta\beta}$ -value ?

To best extract a $0\nu\beta\beta$ signal at $Q_{\beta\beta}$ and to avoid any misinterpretations:

• low background index (BI)

→ careful material selection, screening, shielding, PSD (pulse shape disc.), ...

• best possible energy resolution

→ Germanium: source = detector (diode) → few keV resolution

• if there is a signal

→ different nuclei to exclude unknown nuclear physics

Sensitivity & Background (for a Majorana Mass)

Which 0vββ Isotope?

- mass \leftarrow \rightarrow isotopic abundance / enrichment \leftarrow \rightarrow cost, feasability
- cleanliness (radioputity) of $0\nu\beta\beta$ source and instrumentation
- high $Q_{\beta\beta} \leftarrow \rightarrow$ less nuclear backgrounds
- good energy resolution
- uncertainties in nuclear matrix elements (later...)
 - → Germanium is a very good choice

CERN, Oct. 1, 2013

The GERDA Collaboration

The GERDA Detector (original idea by G. Heusser, MPIK)

GERDA Location: LNGS Hall A

Material γ-Screening Facilities

- Different screening stations@MPIK underground lab (1mBq/kg)
- 4 GEMPIs
 @LNGS (10µBq/kg)
- New: GIOVE
 @MPIK (50µBq/kg)

→ extensive task for GERDA and other experiments (XENON, ...)

Rn Screening Facilities

- Gas counting systems (a) LNGS and (a) MPIK ²²²Rn emanation technique:
- sensitivity = few atoms/probe
- large samples $\leftarrow \rightarrow$ absolute sens.

- non-trivial; not commonly available; routine @MPIK
- established numbers:
 - Nylon (Borexino) < 1μBq/m² Copper (Gerda): 2μBq/m² Stainless steel (Borexino): 5μBq/m² Titanium (preliminary): (100 ± 30) μBq/m²

Detector Construction

- 2004: Letter of Intent
- **R&D:** material selection and screening, tests of bare diodes in LAr
- 2008-2010: construction at LNGS (Gran Sasso, Italy)
 - infrastructure & cryostat
 - water tank & muon veto
 - clean room, lock 6 clean benches
- 2010-2011: comissioning
- Nov. 2011: start of phase I data taking

CERN, Oct. 1, 2013

HP Germanium Detectors

Wanted:

- energy resolution
 - \leftrightarrow Ge diode
- fast det. response
 ←→ small capacity
- pulse shape discr.
- $\leftarrow \rightarrow$ shape
- very high radiopurity
 ←→ crystals
 - \leftrightarrow "naked"

GERDA Detector Types

- 1) re-processed HdM, IGEX and GTF detectors p-type semi-coaxial
- 2) new p-type BEGe (Broad Energy Ge) detectors
- n⁺ conductive Li layer, separated by a grove from the boron implanted p⁺ contact
- operated as ``diode"
- SSE/MSE (single/multi site event) discrimination

GERDA Phase I Detectors

Since Nov. 2011: 6 enriched (86% of ⁷⁶Ge)

ANG2, ANG3, ANG4, ANG5, RG1, RG2 \rightarrow 14.63 kg

1 natural (7,83% of ⁷⁶Ge) GTF112 → 2.96 kg

Since July 2012: 4 BEGe (87% of ⁷⁶Ge) GD32B-GD32D, GD35B → 3.00 kg

In addition: 2 coaxial and 1 BEGe unused due to high leakage currents

Detector Parameter Details

detector	enrichment	mass	active mass	active mass	d_{dl}			
	factor	[g]	[g]	fraction	$\mathbf{m}\mathbf{m}$			
enriched coaxial detectors								
ANG 1 [†])	0.859(29)	958	795(50)	0.830(52)	1.8(5)			
ANG 2	0.866(25)	2833	2468(145)	0.871(51)	2.3(7)			
ANG 3	0.883(26)	2391	2070(136)	0.866(57)	1.9(7)			
ANG 4	0.863(13)	2372	2136(135)	0.901(57)	1.4(7)			
ANG 5	0.856(13)	2746	2281(132)	0.831(48)	2.6(6)			
RG 1	0.855(15)	2110	1908(125)	0.904(59)	1.5(7)			
RG 2	0.855(15)	2166	1800(115)	0.831(53)	2.3(7)			
-RG 3 [†]) -	0.855(15)	2087	1868(113)	0.895(54)	1.4(7)			
enriched BEGe detectors								
GD32B	0.877(13)	717	638(19)	0.890(27)	1.0(2)			
GD32C	0.877(13)	743	677(22)	0.911(30)	0.8(3)			
GD32D	0.877(13)	723	667(19)	0.923(26)	0.7(2)			
GD35B	0.877(13)	812	742(24)	0.914(29)	0.8(3)			
-GD35C [†])	0.877(13)	635	575(20)	0.906(32)	0.8(3)			
natural coaxial detectors								
GTF 32 [†])	0.078(1)	2321	2251(116)	0.97(5)	0.4(8)			
GTF 45 [†])	0.078(1)	2312	Ì, Î					
GTF 112	0.078(ĺ)	2965						

Data Taking

Stable data taking during most of the time (556 d, duty cycle 88%) → 20 kg*y in April 2013 → final exposure 21.6 kg * yr

M. Lindner, MPIK

CERN, Oct. 1, 2013

The Blinding Procedure

Backgrounds

The outer dead layer of the detectors is not active

Background sources:

- α decays on the p+ surface
- β decay of ⁴²K on the surface or close to the detector from ⁴²Ar (10x more than expected)
- β decay of ^{60}Co inside detectors
- γ from ²⁰⁸TI, ²¹⁴Bi and from various setup components

Generic phase I background reduction

- use cleanest possible material
- cut detector coincidences
- prevent ⁴²K ions from drifting to detectors using minishrouds

Detector Performance

Calibration spectra of all detectors

Energy resolution:

coaxial at $Q_{\beta\beta}$: (4.8 ± 0.2) keV BEGe (3.2 + 0.2) keV at 2614.5 keV (4.2 - 5.8) keV (2.6 - 4.0) keV

- stable energy resolution -
- no energy drift between consecutive calibrations (<0.05%) -
- leakage currents stable (except RG2) -

Good Energy Resolution and Gain Stability

FWHM of long term data at ⁴²K 1525 keV y-neak

FWHM (resolution) of $0\nu\beta\beta$ data at $Q_{\beta\beta}$

100	- all coavial detectors	GERDA 13-07	detector	FWHM $[keV]$	detector	$FWHM \ [keV]$
ounts 80		SUM- $coax$		SUM-bege		
0		FWHM: - 4.47±0.12 keV	ANG 2	5.8 (3)	GD32B	2.6 (1)
00			ANG 3 ANG 4	4.5(1) 4.9(3)	GD32C GD32D	2.6(1) 3.7(5)
40			ANG 5	4.2(1)	GD35B	4.0 (1)
20	¥	, H <u>i</u>	RG 1	4.5(3)		
0	1515 1520 1525	, [™] ,	RG 2	4.9 (3)	DEC	
		571 7	mean coax	4.8 (2)	mean BEGe	3.2(2)

The Background Spectrum

M. Lindner, MPIK

CERN, Oct. 1, 2013

The Background Model

Background decomposition with all simulated components; fit window 570-7500 keV Minimum model: minimum set of background components

Larger energy range...

For BEGEs...

M. Lindner, MPIK

Larger energy range for BEGE's

Derived Background Composition

source	location		GOLD-coax		GOLD- nat
		units	minimum	maximum	minimum
40 K ^c)	det. assembly	$\mu Bq/det.$	152[136, 174]	151[136, 174]	218[188,259]
$^{42}K^{c}$	LAr	$\mu Bq/kg$	106[103,111]	91[72,99]	98.3[92,108]
$^{42}K^{c}$	p ⁺ surface	μBq		11.6[3.1,18,3]	
$^{42}K^{c}$	n ⁺ surface	μBq		4.1[1,2,8.5]	
⁶⁰ Co ^c)	det. assembly	$\mu Bq/det.$	4.9[3.1, 7.3]	3.2[1.6, 5.6]	2.6[0, 6.0]
60 Co c)	germanium	μBq	>0.4 †)	$>0.2^{+})$	6[3.0, 8.4]
²¹⁴ Bi ^c)	det. assembly	$\mu Bq/det.$	35[31, 39]	15[3.7, 21.1]	34.1[27.3,42.1]
²¹⁴ Bi ^c)	LAr close to p ⁺	µBq/kg		<299.5	
$^{214}\text{Bi}^{m}$	radon shroud	mBq		$<\!49.9$	
²¹⁴ Bi ^c)	p ⁺ surface	μBq	2.9[2.3, 3.9] [†])	$3.0[2.1,4.0]^{\dagger})$	$1.6[1.2,2.1]^{\dagger})$
²²⁸ Th ^c)	det. assembly	$\mu Bq/det.$	15.1[12.7, 18.3]	5.5[1.8, 8.8]	15.7[10.0,25.0]
$^{228}Ac^{-c}$	det. assembly	$\mu Bq/det.$	17.8[10.0, 26.8]	<15.7	25.9[16.7, 36.7]
228 Th m)	radon shroud	mBq		<10.1	
228 Ac m)	radon shroud	mBq		91.5[27, 97]	
228 Th f)	heat exchanger	Bq		<4.1	

good agreement between model and activities of ⁴⁰K, ⁴²K, ⁶⁰Co

the position of some components can not be resolved (²¹⁴Bi, ²²⁸Th, ...)

More on Backgrounds...

Intensity of gamma peak outside background analysis energy window

Very good agreement between peak intensities vs. background model
 further cross checks... (BiPo coincidences, PSA)

Background Composition: Minimum Model

minimum set of background components **→**

Background Composition: Maximum Model

total set of known background components leading to distinguishable spectra **→**

Pulse Shape Discrimination

Pulse Shape Discrimination: Coaxial

- 3 independent PSD methods:
- likelihood classification
- PSD selection based on pulse asymmetry
- neural network analysis (ANN)
 Training with calibration data

Neural Network Training with Calibration Data

- DEP events in the interval $1592 \, \text{keV} \pm 1$ *FWHM* serve as proxy for SSE
- Full energy line of ²¹²Bi in the equivalent interval around 1620 keV are dominantly MSE, taken as background events

Pulse Shape Discrimination: BEGe A/E Cuts

→ Cutting in A/E → rejects background like MSEs
 → ε_{PSD} = 0.92 ± 0.02 → ca. 85% of background events at Q_{ββ} rejected

M. Lindner, MPIK

CERN, Oct. 1, 2013

Application of PSD to Phase I Data

- all events removed by ANN are removed by at least one other method
- events discarded by ANN are in 90% of the cases discarded by all 3 methods
- in a larger energy window about 3% are only rejected by ANN

⇒ About 45% of events are rejected

Efficiency: $\epsilon_{0\nu\beta\beta} = 0.90^{+0.05}_{-0.09}$

The Region of Interest

expected bg from interpolation:

5.1 events w/o PSD 2.5 events with PSD

M. Lindner, MPIK

The Region of Interest

Details of the unblinded Spectrum

data set	detector	energy	date	PSD	data set $\mathcal{E}[kg \cdot yr] \langle \epsilon \rangle$	bkg	BI [†])	cts
		[keV]		passed	without PSD			
golden	ANG 5	2041.8	18-Nov-2011 22:52	no	golden 17.9 0.688 ±	0.031 76	$18.4^{+2.2}_{-2.1}$	5
silver	ANG 5	2036.9	23-Jun-2012 23:02	yes	<i>silver</i> $1.3 0.688 \pm 1.3$	0.031 19	63^{+16}_{-14}	1
golden	RG 2	2041.3	16-Dec-2012 00:09	yes	$BEGe = 2.4 = 0.720 \pm 0.720$	0.018 23	42^{+10}_{-8}	1
BEGe	GD32B	2036.6	28-Dec-2012 09:50	no	with PSD			
golden	RG 1	2035.5	29-Jan-2013 03:35	yes	$golden$ 17.9 $0.619^{+0.}_{-0.}$	044 070 45	$10.9^{+1.7}_{-1.6}$	2
golden	ANG 3	2037.4	02-Mar-2013 08:08	no	silver $1.3 0.619^{+0.0}_{-0.0}$	044 9 070 9	30^{+11}_{-9}	1
golden	RG 1	2041.7	27-Apr-2013 22:21	no	$BEGe = 2.4 = 0.663 \pm$	0.022 3	$0.5^{+0.4}_{-0.3}$	0
					[†]) in units of 10 ⁻³ cts/(keV-kg	yr).		

M. Lindner, MPIK

Profile Likelihood Fit to PSD Spectrum

profile likelihood (PL) fit:

signal = a*flat background + b*line

→ best fit: N⁰[∨] = 0 ; upper limit: N⁰[∨] < 3.5 (90%CL) → half life limit T_{1/2}(0∨ββ) > 2.1 * 10²⁵ yr (90% C.L.)

Comparison with the KK Claim (2004)

claim: T_{1/2}($0\nu\beta\beta$) = 1.19 *10²⁵ yr Phys. Lett. B 586 (2004) 198

Stronger 2006 claim: 100% PSD efficiency assumed → incorrect → realistic efficiency = no improvement

GERDA:

- much lower BI
- no unknown nuclear lines
- remaining flat background in ROI

GERDA upper limit from PL fit: < 3.5 events (90%CL)

for the KK claim GERDA is expected to see (2σ) : 5.9 \pm 1.4 signal counts 2.0 \pm 0.3 background counts

 \checkmark **>** probability for a fluctuation 1%

Combination of Ge Results

Comparison with Xenon Results

NME's: Relating Lifetimes & Neutrino Masses

m_{ee}: The Effective Neutrino Mass

- cosmology: further improvements $\leftarrow \rightarrow$ systematical errors
- NMEs → unavoidable theory error in m_{ee}
- assumptions: no *other* $\Delta L=2$ physics, no sterile neutrinos, ...

Interferences in 0vββ Decays

Usually

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \left(\frac{|m_{0\nu\beta\beta}|}{m_e}\right)^2 |\mathcal{M}^{0\nu}|^2 G^{0\nu}$$

 $G^{\text{int}} = \text{overall phase space factor} \\ \epsilon m_e \mathcal{M}^{\epsilon} \quad \leftarrow \rightarrow \text{determined by parameters of new physics}$

$$m_{0
u\beta\beta}^{
m int} \equiv m_{0
u\beta\beta} + \epsilon m_e \mathcal{M}^{\epsilon} (\mathcal{M}^{0
u})^{-1} \equiv m_{0
u\beta\beta} + m_{\epsilon}$$

Dürr, ML, Neuenfeld

GERDA Outlook

Transition to phase II:

- ✓ drainage, inspection & refilling of WT
- Installation of more new BEGe detectors
 → ~factor 2 in ⁷⁶Ge mass
- Installation of light instrumentation
 fibers and PMTs = anti-Compton veto
 further reduction of background index
- Continue data taking with more mass, less BI, longer time, ...

Summary

- GERDA has finished phase I data taking with unprecedented BI in ROI
- The background in the GERDA experiment can be explained well & and is flat arounf ROI!
- 3 independent pulse shape discrimination techniques efficiently reduces background
- Half life limit for 0vββ-decay of ⁷⁶Ge:
 2.1·10²⁵ yr (90% C.L.)

- Combined with HdM and IGEX: 3.0·10²⁵ yr (90% C.L.)
 HdM claim strongly disfavored!
- Transition to phase II is on-going

M. Lindner, MPIK