$0\nu\beta\beta$ decay search in 2013: Status and advancements

Werner Maneschg

Max-Planck-Institut für Kernphysik, Heidelberg

2013 International Workshop on Baryon and Lepton Number Violation: From the Cosmos to the LHC April 8-11, 2013, MPI-K Heidelberg, Germany

W. Maneschg (MPI-K)

 $0\nu\beta\beta$ decay search in 2013

April 11, 2013 1 / 23

April 11, 2013 2 / 23

Motivations for $0\nu\beta\beta$ decay search

Observation of 0uetaeta decay helps answering 3 fundamental questions:

- Is lepton number conservation violated? Are neutrinos their own anti-particles ? → If yes, physics beyond the Standard Model of Elementary Particles with impact up to cosmology
- What is the absolute neutrino mass scale ? → Neutrino-oscillations reveal only squared mass-differences of neutrino mass eigenstates
 - Is the neutrino mass spectrum degenerate, normal or inverted ? \rightarrow Atm./solar/reactor neutrino oscillation experiments allow different scenarios (Hierarchy problem)
 - \rightarrow Measurement of 'effective' neutrino mass which is very rich of information:

$$\langle m_{ee} \rangle = \left| \Sigma \left| U_e i \right|^2 m^i e^{i \alpha_i} \right|$$

with $U_e i$ neutrino mixing matrix, m^i neutrino mass eigenstate, α_i CP-violating Majorana phases

Observable: $0\nu\beta\beta$ decay rate at $Q_{\beta\beta}$, i.e. half-life $T_{1/2}$. If not observed, then quoting a lower limit of $T_{1/2}$ (90%C.L).

< ロト < 同ト < ヨト < ヨト

- Best limit in the past obtained by HdM (2001): $T_{1/2}^{0\nu} > 1.9 \times 10^{25} \text{ yr}; \langle m_{ee} \rangle \leq 0.35 \text{ eV}$
- KKDC claim (2004): $T_{1/2}^{0\nu}$ =1.17×10²⁵ yr; $\langle m_{ee} \rangle \sim$ (0.23-0.59) eV

W. Maneschg (MPI-K)

Half-life correlation with effective Majorana neutrino mass

$$(T_{1/2})^{-1} = G^{0\nu} |M^{0\nu}|^2 \langle m_{ee} \rangle^2$$

with $G^{0\nu}$: phase space factor, $M^{0\nu}$: nuclear matrix element, $\langle m_{\beta\beta} \rangle = \left| \sum_{i} m_{j} U_{ei}^{2} \right|$

Request: Larger number of measurement with different isotopes

- \rightarrow Avoid (not well) known rare background events at $Q_{\beta\beta}$
- \rightarrow NME uncertainties \leq 30% for neutrino mass spectrum & CP violating phases
- \rightarrow Mechanisms: Light vs. heavy Majorana neutrino exchange, RHC,...

Progresses in experimental techniques

Determination of the half-life

$$T_{1/2} \propto \begin{cases} a \cdot \epsilon \cdot M \cdot T, & \text{background-free} \\ a \cdot \epsilon \cdot \sqrt{\frac{M \cdot T}{\Delta E \cdot B}}, & \text{if background is present} \end{cases}$$

with a: Abun./Enrich.; M: Mass; ϵ : act.volume; ΔE : e-res.; T: life-time; B: bkgd

Isotope	$Q_{\beta\beta}$	nat.Abun.	Experiment	FWHM/E	Mass
-	[keV]	[%]	(oper./funded)	@ Q _{ββ} [%]	[kg]
⁴⁸ Ca	4273.7	0.19	Candles		0.35
⁷⁶ Ge	2039.1	7.8	GERDA	0.1-0.2	$15 \rightarrow 35$
			Majorana Dem.	0.1-0.2	30
⁸² Se	2995.5	9.2	SuperNEMO		$7 \rightarrow 100$
			Lucifer		-
¹⁰⁰ Mo	3035.0	9.6	MOON		480
			AMoRe		100
¹¹⁶ Cd	2809.1	7.6	Cobra		64
¹³⁰ Te	2530.3	34.5	CUORE	0.2	$10 \rightarrow 200$
¹³⁶ Xe	2457.8	8.9	EXO	4.0	175
			KamLand-Zen	9.8	$330 \rightarrow 1000$
			NEXT		100
¹⁵⁰ Nd	3367.3	5.6	SNO+(orig.)		44

Request: Larger number of measurement with different isotopes

- \rightarrow Avoid natural radioactivity: stay above $^{208}\mathrm{Th}$ and $^{214}\mathrm{Bi}$ lines
- \rightarrow Advantages of single isotopes: better ΔE , scalability/enrichment of isotope mass
- \rightarrow Measurements: independent techniques with ${\leq}30\%$ precision

W. Maneschg (MPI-K)

$0\nu\beta\beta$ decay search in 2013

April 11, 2013 5 / 23

Isotopes and experimental techniques for $0\nu\beta\beta$ decay search

• Selected best isotope candidates: 8 out of 35 (\leftarrow nat. abundance, $Q_{\beta\beta}$, $G^{0\nu} \propto (Z, Q_{\beta\beta}^{5})$, chem. properties)

Techniques and their advantages:

- Source=Detector: large isotopic masses possible and scalable (10-100 kg now, 1 ton near future)
- Source≠Detector: Tracking particle momenta → Topology of events and mechanisms
- Liquid scintillator detectors: multi-functional, largest target masses, purification strategies
- Solid state detectors achieve the best energy resolution: FWHW/E at $Q_{\beta\beta}=0.15\%$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The CUORE experiment

Location: LNGS, Assergi, Italy

Detectors, cryostat, and shield

- Te0₂ crystals cooled down to ~10 mK with He within a multi-layer copper cryostat
- Isotopic nat. abundance of ¹³⁰Te: 34.1% (no enrichment!)
- Energy resolution: 0.2% in ROI !
- Inner Roman lead layer and outer lead layer
- Ra barrier and neutron shield
- 1400 m overburden, corresponding 3500 m w.e.

Concept: DBD Source = Absorber

Bolometric technique

Te02 absorbs energy deposition E by particle

- Energy deposition *E* registered by a thermistor (NTD Ge) as temperature increase: Signal: $\Delta T = E/C$, C: capacity Time constant = C/G; G: thermal coupling Need: \rightarrow low-heat C \rightarrow mK + diele.diamagn.mat.
- ♦ Very good energy resolution achievable: ~5 keV @Q_{ββ} (2527 keV), corr.FWHM/E=0.2%

< ロト < 同ト < ヨト < ヨト

W. Maneschg (MPI-K)

 $0\nu\beta\beta$ decay search in 2013

April 11, 2013 7 / 23

Status and sensitivity of Cuore-0/Cuore

Installation of Cuore-0

(spring/summer 2012)

- Cuoricino (2003—2008):
 - 12 kg 130Te
 - Main purpose: identify and disentangle backgrounds (cryostat, copper/crystal surfaces)
- Cuore-0 (2012—2014):
 - Installation in cryostat completed, but cooling-down problems since May 2012
 - August 2012 first calibration, recently real data-acquisition started
 - With BI=0.05 cts/(keV·kg·yr), 2 yr run (90%C.L.):
 - $\rightarrow T_{1/2}^{0\nu} > 5.9 \times 10^{24} \text{ yr}, \rightarrow \langle m_{\beta\beta} \rangle < 0.17 \text{-} 0.39 \text{ eV}$
- Cuore (2014—2019):
 - Crystals arrived at LNGS; first two towers should be glued in May 2013
 - Radiopurity of all crystals measured; extrapolation to BI for Cuore:
 - \rightarrow from bulk: $1.1 \times 10^{-4} \text{ cts/(keV \cdot kg \cdot yr)}$
 - \rightarrow from surface: 4.2×10⁻³ cts/(keV·kg·yr)
 - With BI=0.01 cts/(keV·kg·yr), 5 yr run:
 - $ightarrow T_{1/2}^{0
 u}$ >1.6imes10 25 yr, $\langle m_{etaeta}
 angle$ <0.04-0.09 eV

• □ ▶ • @ ▶ •] ▶ •

Location: LNGS, Assergi, Italy

Setup and background shielding:

- 1.4 km overburden, corresponding 3500 m w.e.
 → Reduction of cosmic-muon flux by six orders of magn. down to ~1 µ/(m² · h) (PB)
- Water tank and plastic scintillator
 - R=5 m, h=9.0 m, 590 m³ ultra-pure water
 - \rightarrow water acts as neutron moderator/absorber (PB)
 - \rightarrow both components act as muon Cherenkov veto (AB)

Large volume cryostat:

- R=2 m, h=5.9 m, 64 m³ LAr
- \rightarrow LAr acts as cooling medium for diodes
- \rightarrow LAr attenuates external radiation (PB)
- \rightarrow LAr scintillation light planned to be used an background rejection (AB)

GERmanium Detector Array:

- 1-string and 3-string arms with each 3 detectors (Phase I)
- One 7-string arm (design for Phase II)
- Accessible via a clean room (class 10000) (PB)
- Operating bare diodes in LAr using low-mass holders (PB)
- ightarrow 0uetaeta source = Detector, enriched in 76 Ge
- coincidence modus and pulse shape tracing (AB)
 - $\begin{array}{l} \mathsf{PB} = \mathsf{passive} \ \mathsf{background} \ \mathsf{rejection} \\ \mathsf{AB} = \mathsf{active} \ \mathsf{background} \ \mathsf{rejection} \end{array}$

< ロト < 同ト < ヨト < ヨト

W. Maneschg (MPI-K)

 $0\nu\beta\beta$ decay search in 2013

April 11, 2013 9 / 23

Data acquisition and handling, and detector performance:

- Technology: Refurbished co-axial HPGe detectors, 6⁷⁶Ge enriched (HdM, IGEX) for ~15 kg, 3 natural (GTF)
- Since July 2012: added 5 enriched Phase II BEGe prototype detectors for ∼3.5 kg
- Energy resolution of co-axial diodes: stable at 4.5-5.1 keV (FWHM) for 2614.5 keV
- Background index (BI)* for co-axial diodes: ~0.02 cts/(keV·kg·yr)
 * BI:= Q_{ββ}=2039 keV of ⁷⁶Ge ± 100 keV (minus 40 keV blinded region)
- Collected statistics: ~19 kg·yr (March 2013) (lifetime ~90%)
- Data blinding of Q_{ββ} region: automatic blinding of Q_{ββ} region applied since January 11, 2012; → Unblinding planned for summer 2013 !

String with co-axial HPGe diodes

String with BEGe diodes

BI of Phase I co-axial detector

Results from GERDA Phase I

Measurement of $2\nu\beta\beta$ half-life of ⁷⁶Ge

Fit region: (600-1800) keV; May 2011-Nov 2012; only enriched detectors

- Fit method: binned maximum likelihood method with free parameters: ⁴⁰K, ⁴²K, ²¹⁴Bi, T^{2V}_{1/2}, active mass, enrichment
- Background is 'low': S/B~8/1!
- High ⁴²Ar background, however, due to ion collection through E-field of diodes from applied HV.

Results for $T_{1/2}^{2\nu}$ [×10²¹ yr]

Preliminary GERDA result: 1.84^{+0.14}_{-0.10} (sys+stat)

 $\begin{array}{l} \label{eq:comparison} \mbox{to previous measurements: superior signal-to-background ratio, trend towards higher $T_{1/2}^{2\nu}$, but in good agreement with the most recent results based on HdM data } \end{array}$

Upgrade to GERDA Phase II (planned start within 2013)

Assembly of new detectors:

Novel technology: 25 ⁷⁶Ge enriched BEGe detectors for ~17 kg:

 \rightarrow Better sensitivity due to: increased target mass, better energy resolution, and enhanced pulse shape discrimination of Multi-Site background Events ($0\nu\beta\beta$ events are Single-Site Events)

Scintillation light instrumentation:

- Technique: Background rejection of external background events via detection of scintillation light in liquid argon (λ=128 nm)
- Options for read-out: PMT, Wavelength-shifter glass-fibre, large area avalanche photodiodes or UV sensitive SiPMs
- Envisioned BI (BEGe + Light instr): ≤0.001 cts/(keV·kg·yr)

The Majorana Demonstrator

Concept: DBD source = Detector

Location: Sanford UG lab, Lead, SD, USA (1.480 m Overburden)

Detector setup and performance:

- P-Type point contact Ge detectors (also low noise, e-threshold below 1 keV → suitable for low-mass WIMP detection)
- 40 kg (out of them 30 kg enriched in ⁷⁶Ge) germanium diodes in a large volume vacuum crystat within ultra-low background shield made of ultrapure electro-formed copper and lead.
- Full commissioning in 2013: after 1 year: $T_{1/2} > 4 \times 10^{25}$ yr, address KKDC $0\nu\beta\beta$ observation claim

GERDA-Majorana cooperation:

Open exchange of knowledge and technologies
 Joint constant development of the Geant4-based simulation tool MaGe
 Common intention for 1-ton experiment; goal sensitivity: (m_{ββ}): 0.04-0.12 meV (IH region)
 W. Maneschg (MPI-K)
 0νββ decay search in 2013
 April 11, 2013
 13 / 23

The COBRA R&D project

Concept: DBD source =

Detector

Location: LNGS, Assergi, Italy

Solid state TPC

- Large Array of CdZnTe semicond. detectors for 420 kg Goal sensitivity: $T_{1/2} > 10^{26}$ yr ($\langle m_{\beta\beta} \rangle$ 50 meV)
- Containing: $5 \ 0\nu\beta^-\beta^-$, and $4 \ EC/\beta^+$, EC/EC candidates Best candidate: ¹¹⁶Cd: $Q_{\beta\beta}$ =2809 keV; \rightarrow enrichment
- Two modular designs (both oper. at room temp): - CoPlanar Grid Detectors (CPG): little 'location' info (with PSA), $\Delta E < 2\%$, and simple read-out
 - Pixelated Detectors (PD): 3D 'location', Particle ID if pixels small (\sim 100 μ m), ΔE <1%, but complex read-out

Status:

- MC/test for shield options: multi-layer, liq. scint., water
- Technical design report: expected within 2013
- $2\nu\beta\beta$: 6 $T_{1/2}$ limits $> 10^{20}$ yr, 7 new upper limits
- 0νββ: achieved background for: Colorless passivated CPG at ¹¹⁶Cd ROI: 5 cts/(keV·kg·yr) Large Volume PD in 2700-3000 keV: 0.9 cts/(keV·kg·yr)

W. Maneschg (MPI-K)

The EXO-200 experiment

Detector design and background reduction

- LXe Vessel in ultra-radiopure copper cryostat filled with high-purity heat transfer fluid HFE7000
- ۵. Lead shield
- 4 plastic scintillators as active muon vetos
- 700 m overburden, corresponding 1600 m w.e.

WIPP lab, Carlsbad, NM, USA Location:

Detection principle

• Medium: 175 kg of LXe: ¹³⁶Xe enrichment: 80.6%

Detection principle:

- Collection charge wires measure ionized electrons
- Large Area Avalanche Photodiodes (APDs) measure 178 nm scintillation light
- Gain information from:

0 Drifttime

- \rightarrow Position reconstruction res.: X.Y: 18 mm: Z: 6 mm
- \rightarrow Distinguish single $\beta/\beta\beta$'s from multiple γ -ray clusters:
- Ionisation vs. Scintillation:
 - \rightarrow Discrimination of α from $\beta/\beta\beta/\gamma$
 - \rightarrow Improve energy resolution down to
 - 1.67%

Measurement of 2 uetaeta half-life of 136 Xe

 Rejection of peripheral background by Fiducial Volume cut:

 \rightarrow Active mass of 98.5 kg of LXe ($^{136} \rm Xe:$ 79.4 kg)

 \rightarrow LXe exposure after 120.7 d: 32.5 kg·yr

SSE $2\nu\beta\beta$ spectrum:

 \rightarrow spectrum contains ${\sim}22000~2\nu\beta\beta$ events above 0.7 MeV

 \rightarrow S/B ratio of $\sim 10/1$!

Image: Image:

 \rightarrow SSE spectrum: 82.5% of $2\nu\beta\beta$ events (Fraction calculated via MC)

Results for $T_{1/2}^{2\nu}$ [×10²¹ yr]

EXO-200 (May 2012): 2.23±0.02±0.22 (stat+sys) arXiv:1205.5608 Agrees with KamLAND-Zen (May 2012): 2.30±0.02±0.12 (stat+sys) arXiv:1205.6372 Contradicts DAMA/LXe: >10 yr (90%C.L.) (R. Barnabei et al., Phys.Lett.B 546 (2002) 23)

April 11, 2013 16 / 23

-

Limit for 0 uetaeta half-life of 136 Xe

April 11, 2013 17 / 23

The KamLAND-Zen experiment

- Xe: high isotopic enrichment, extraction and purification
- Use existing ultra-pure detector; low-energy anti-neutrino measurements can be continued

W. Maneschg (MPI-K)

 $0\nu\beta\beta$ decay search in 2013

Measurement of $2\nu\beta\beta$ half-life of ¹³⁶Xe

Data-sets and 2νββ rate (February 2013: arXiv:1211.3863v2[hep-ex]):

- DS-1: October 12, 2011 - filtration: \rightarrow 82.9 \pm 1.1(stat) \pm 3.4(syst) cts/(d·ton)

- Filtration (February 2012): PTFE-based 50 nm filter; 2.3 full-volume exchange

- DS-2: filtration - June 14, 2012: \rightarrow 80.2 \pm 1.8(stat) \pm 3.3(syst) cts/(d·ton

Exposure for ¹³⁶Xe alone (both data-sets together: 89.5 kg·yr)

KamLAND-Zen $2\nu\beta\beta$ half-life result (May 2012):

 $2\nu\beta\beta$ rate = (80.9 \pm 0.7) cts/(d·ton)

 $T_{1/2}^{2\nu} = 2.30 \pm 0.02 \pm 0.12 \text{ (stat+sys)} \times 10^{21} \text{ yr} \text{ (arXiv:} 1205.6372)$

April 11, 2013 19 / 23

Limit for 0uetaeta half-life of 136 Xe

Expected spectrum

0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Visible Energy(Me)

> 2.6 Visible Energy (MeV)

(May 2012)

157 events

0.25/ton day

0.8

0.6

0.4

0.2

Meas. spec.

- Data 112day

Unexpected peak at 2.6 MeV

- Rate stable in time, → non-shortlived radioisotopes
- Non-compatible with Q_{ββ} of ¹³⁶Xe
- Check 'all' nuclei (O(10³)) and decay paths (O(10⁶)) →Remaining candidates: ^{110m}Ar, ²⁰⁸Bi, ⁸⁸Y, ⁶⁰Co

$T_{1/2}^{0\nu}$ result (February 2013)

 $T_{1/2}^{0\nu} > 1.9 \times 10^{25} \text{ yr}$ (EXO-200 result from 2012 ($\langle m_{\beta\beta} \rangle < 0.14$ -0.38 eV (90% C.L.)) slightly improved)

- Purification ongoing: in late 2012 Xe removed from scintillator, LS being distilled, IB replacement → Expected lower background ^{110m}Ar (,²⁰⁸Bi,⁸⁸Y) background by 100×
- 600 kg Xe already in the Kamioka mine, \rightarrow first $\beta\beta$ 1-ton experiment ?

W. Maneschg (MPI-K)

 $0\nu\beta\beta$ decay search in 2013

Combined results from the 136Xe experiments

• Combination of the recent negative results from KamLAND-Zen and EXO-200 (arXiv:1211.3863v2 [hep-ex]): $T_{1/2}^{0\nu} > 3.4 \times 10^{25}$ yr, $\langle m_{\beta\beta} \rangle < 0.12 \cdot 0.25$ eV at 90%C.L.

 \rightarrow refutes the $0\nu\beta\beta$ detection claim in ^{76}Ge at >97.5% C.L. (for all NME, assuming light Majorana exchange mechanism)

Some remarks about this result:

- From QRPA calc.: $T_{1/2}(^{136}Xe) \sim 3.4.4.3 \times 10^{25}$ y needed for 90% C.L. to rule out ⁷⁶Ge claim ; however, some issues concerning the likelihood/ χ^2 functions non-available from experiments (A. Faessler et al., arXiv:1301.1587v1 [hep-ph]) - Some issues concerning the 1.(4 σ) and 2.(6 σ) ⁷⁶Ge KKDC claim (B. Schwingenheuer, arXiv:1210.7432 [hep-ex])

 \rightarrow '...not yet the end of the story'

SNO+: a multipurpose experiment

Location: Sudbury, Ontario, Canada

Detector setup

- 2000 m overburden, corresponding 6000 m w.e.
- Outer stainless steel frame (D=17.8 m), carring 9500 PMTs and acrylic vessel AV (907 m³)
- Between PMTs and AV: 3 m thick ultrapure light water
- Upgrade of trigger/DAQ due to 45× more light
- Scintillator: 780 ton of acrylic-compatible linear alkylbenzene (LAB), hold down with ropes (buoyancy) installed in January 2013. Water filling (before scin. filling) starting in 9 days !

Phase I:

- Original idea with 150 Nd rejected, March 2013 decision to pursue 130 Te as prim. target isotope
- \sim 0.3% of nat. Te (% ¹³⁰Te (800 kg)
- $\rightarrow \langle m_e ff \rangle = 50 \text{ meV} (\text{after } \sim 3 \text{ yr})$
- Phase II: $\sim 3\%$ of nat. Te $\rightarrow \langle m_e ff \rangle = 15 \text{ meV}$ (full IH)

W. Maneschg (MPI-K)

 $0\nu\beta\beta$ decay search in 2013

April 11, 2013 22 / 23

Current Status

- In 2012/2013, after a dedade of R&D, we will have/have first results from several new generation 0νββ experiments: EXO-200, KamLAND-Zen, GERDA. Their sensitivies will are/will be similar/better than the best former experiment: HdM
- In the next years, other experiments using different techniques and $\beta\beta$ isotopes will become operational
- A lot of progresses in calculating the $0\nu\beta\beta$ nuclear processes were achieved

Outlook: Possible scenarios

- If range $\langle m_{\beta\beta} \rangle = 0.1 0.5 \text{ eV}$ holds (if KK claim confirmed):
 - ightarrow EXO-200, KamLAND-Zen (¹³⁶Xe) and GERDA (⁷⁶Ge) should observe the signal
 - \rightarrow Other experiments that will be finalized in the next years will observed the $0\nu\beta\beta$ decay in other isotopes (SNO+ Phasel and Cuore in ¹³⁰Te,...)

 \rightarrow Precision-experiments (SuperNEMO-type) have to follow (to improve NME and understand exchange mechanisms \rightarrow SuperNEMO-type detectors)

• If range $\langle m_{\beta\beta} \rangle = 0.02 - 0.05 \text{ eV}$ holds:

- → Necessity for large scale enrichment and lower background reduction
- ightarrow Possible experiments: nEXO, Gerda Phase III and Majorana, Cuore marginally, KamLand-Zen(2),...
- \rightarrow Discovery in 3-4 isotopes necessary to confirm the observation and to improve the calculations of nuclear processes

2013+ will be exciting years for Lepton Number violating $\beta\beta$ decay search!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >