The GERDA experiment for the search of neutrinoless double beta decay: status and perspectives

Matteo Agostini* on behalf of the GERDA Collaboration

* Physik-Department E15, Technische Universität München, Germany

Rencontres de Blois, May 26-31, 2013

Outline

Neutrinoless double beta decay

The **GERDA** experiment

GERDA Phase I: status and first results

GERDA Phase II: preparation and plans

Matteo Agostini (E15/TUM)

Neutrinoless double beta decay Double beta decays

Second order nuclear transitions \rightarrow decay of two neutrons into two protons:

0-neutrino final state $(0\nu\beta\beta)$:

- $(A, Z) \rightarrow (A, Z+2) + 2e^{-}$
- lepton number violation ($\Delta L = 2$)
- physics beyond the Standard Model (e.g. right-handed weak currents, super-symmetric particles...)
- ν Majorana mass component (Schechter-Valle theorem)
- $T_{1/2}^{0
 u}$ limits in the range $10^{21}-10^{25}$ yr
- one unconfirmed claim (subgroup of HdM experiment)

Neutrinoless double beta decay Double beta decays

Second order nuclear transitions \rightarrow decay of two neutrons into two protons:

0-neutrino final state $(0\nu\beta\beta)$:

- $(A, Z) \rightarrow (A, Z+2) + 2e^{-}$
- lepton number violation ($\Delta L = 2$)
- physics beyond the Standard Model (e.g. right-handed weak currents, super-symmetric particles...)
- ν Majorana mass component (Schechter-Valle theorem)
- $T_{1/2}^{0
 u}$ limits in the range $10^{21}-10^{25}$ yr
- one unconfirmed claim (subgroup of HdM experiment)

Neutrinoless double beta decay **Experimental aspects of** $0\nu\beta\beta$ search in Ge-76

- \blacktriangleright even-even nuclide for which β decay is energetically forbidden
- ▶ HPGe detectors from Ge material enriched in 76 Ge (~87%)
- detectors well established technology
- ▶ optimal spectroscopy performance: \triangleright long-term stability $\triangleright \Delta E \approx 0.1\%$ at $Q_{\beta\beta}$ \triangleright radio purity

Matteo Agostini (E15/TUM)

The GERDA experiment Concept and goals

- ▶ Bare Ge detectors in liquid Argon (LAr)
- ► Shield: high-purity LAr/H₂O
- ▶ Radio-pure material selection
- ► deep underground (LNGS, 3800 m.w.e.)

	⁷⁶ Ge detectors	target mass [kg]	background at Q_{etaeta} [cts/(keV·kg·yr)]	sensitivity goal
Phase I (Nov 11 - Spring 13)	8 coaxial	17.7 kg	10 ⁻²	scrutinize the claim ${\cal T}_{1/2}^{0 u}\sim 1.2\cdot 10^{25}{ m yr}$ (Phys.Lett. B586 2004)
Phase II (starting in 2013)	8 coaxial 30 BEGe	17.7 kg 20 kg	\lesssim 10 $^{-3}$	$T_{1/2}^{0 u}>10^{26}{ m yr}$

The GERDA experiment Backgrounds and mitigation techniques

Background sources:

- ► natural radioactivity (²³²Th and ²³⁸U chains): ▷ γ-rays (e.g. ²⁰⁸Tl, ²¹⁴Bi)
 - $ightarrow \alpha$ -emitting isotopes from surface contamination (e.g. ²¹⁰Po) or ²²²Rn in LAr
- cosmogenic isotopes in Ge decaying inside the detectors (⁶⁸Ge, ⁶⁰Co)
- ▶ unstable Ar isotopes (³⁹Ar,⁴²Ar)

Mitigation strategy:

- detector anti-coincidence (already used in Phase I)
- ▶ time-coincidence (Bi-Po or Ge-68)
- ▶ pulse shape analysis (in future)
- ► LAr-scintillation (only Phase II)

GERDA Phase I: status and first results **Detector array assembly**

- ▶ 3 + 1 strings
- ▶ 8 ^{enr}Ge coaxial detectors (2 not considered in the analysis)
- 3 ^{nat}Ge coaxial detectors
- ▶ 5 ^{enr}Ge BEGe detectors (R&D for Phase II)

^{enr}Ge mass for physics analysis: 14.6 kg (coaxial) + 3.6 kg (BEGe)

GERDA Phase I: status and first results Detector calibration (Th-228)

GERDA Phase I: status and first results **Detector stability**

GERDA Phase I: status and first results Integrated exposure

GERDA Phase I: status and first results Main structures in the energy spectrum

GERDA Phase I: status and first results Gamma-line intensities

GERDA Phase I: status and first results Background index in the $Q_{\beta\beta}$ region

Average background index values in $Q_{\beta\beta} \pm 100 \text{ keV}$ (excluding central 40 keV):

- $2.2^{+0.3}_{-0.3} \cdot 10^{-2} \, \text{cts/(keV \cdot kg \cdot yr)}$, ^{enr}Ge coaxials, 13.6 kg·yr
- $1.7^{+0.3}_{-0.3} \cdot 10^{-2} \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$, ^{enr}Ge coaxials, $12.3 \text{ kg} \cdot \text{yr}$ (w/o run 34/35, 8% exp)
- $4.1^{+1.5}_{-1.2} \cdot 10^{-2} \operatorname{cts}/(\operatorname{keV} \cdot \operatorname{kg} \cdot \operatorname{yr})$, ^{enr}Ge BEGe's, $1.5 \operatorname{kg} \cdot \operatorname{yr}$

Matteo Agostini (E15/TUM)

Previous exp (i.e. HdM & IGEX): BI $\sim 0.17 \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$

Background contributions at $Q_{\beta\beta}$:

▶ γ: TI-208 and Bi-214

▶ α: Po-210, Rn-226 chain

▶ β: K-42 and Bi-214

GERDA Phase I: status and first results Background model at $Q_{\beta\beta}$ – Preliminary

▶ main contributions considered:

 \triangleright K-42 \triangleright α -emitting isotopes

GERDA Phase I: status and first results Background model – $2\nu\beta\beta$ half-life

Binned maximum likelihood (5 kg·yr)

Matteo Agostini (E15/TUM)

GERDA Phase I: status and first results Background model – $2\nu\beta\beta$ half-life

GERDA Phase II: preparation and plans Phase II detectors and liquid argon scintillation

BEGe detectors:

- ▶ excellent energy resolution (1.6 keV @ 1.3 MeV)
- enhanced pulse shape discrimination performance
- ▶ 30 new ^{enr}Ge BEGe detectors produced (20 kg)

LAr-scintillation (combined design):

- Iow-background photo-multipliers
- ► WLS fibers read-out with Si photo-multipliers

Pulse shape analysis combined with LAr-scintillation (in LArGe setup): measured suppression factor of $(5.2 \pm 1.3) \cdot 10^3$ at $Q_{\beta\beta}$ for close Th-228

Conclusions

- \blacktriangleright GERDA Phasel started in Nov 2011
- \blacktriangleright Data taking ongoing —> collected more than 20 kg·yr of exposure
- ► Background order of magnitude lower than previous experiments \sim 0.02 cts/(keV·kg·yr) at Q_{ββ}

► Measured $2\nu\beta\beta$ half-life with a strong reduction of systematic uncertainties with respect to the previous experiments $T_{1/2}^{2\nu} = (1.84^{+0.09}_{-0.08 \text{ fit}} \stackrel{+0.11}{_{-0.06 \text{ syst}}}) \cdot 10^{21}$

▶ Phase I almost complete: data unblinding June! Average expected $0\nu\beta\beta$ sensitivity of:

 $T_{1/2}^{\,0
u}\gtrsim 1.9\cdot 10^{25}\,{
m yr}$

▶ Transition to Phase II in preparation (starting in summer 2013): major upgrade for further reduction of the background to the level of 10^{-3} cts/(keV·kg·yr) at Q_{ββ} (pulse shape analysis with BEGe detectors and LAr instrumentation).