GERDA: results and future

Dušan Budjáš

Technische Universität München for the GERDA collaboration

http://www.mpi-hd.mpg.de/GERDA

The GERDA collaboration

Outline

- 1. Experimental approach and design
- 2. Data and analysis
- 3. Result: $0\nu\beta\beta T_{1/2}$ limit
- 4. Future: GERDA Phase II

GERDA: 0vßß-decay experiment

GERDA aims to search for the half-life of $0\nu\beta\beta$ decay of 76 Ge

Germanium detectors:

- ultra high purity material
- excellent energy resolution
- enrichment in ⁷⁶Ge ~86%

 $n+layer_{\searrow}$

0vββ-decay search using ⁷⁶Ge

Klapdor-Kleingrothaus claim: 1.19^{+0.37}-0.23

Past approach (IGEX, HdM):

GERDA approach (Gerd Heusser '95):

6

Eur. J. Phys. C73 (2013) 2330 Design of GERDA

Laboratori Nazionali del Gran Sasso

Eur. J. Phys. C73 (2013) 2330 Design of GERDA

1. s

Dušan Budjáš (TUM)

GERDA

Water Cherenkov PMT muon veto

Low background challenge

Samples of all materials measured and selected for low radioactivity.

Variety of ultra-sensitive methods:

- Ge-detector spectrometry
- ➤ mass spectrometry
- neutron activation analysis
- radon emanation detection via proportional gas counters

GALLEX/GNO heritage GeMPI spectrometer, evolution of Heidelberg-Moscow detector design

proportional gas counter,

Low background challenge

⁴²Ar concentration in natural argon found much higher than expected.

⇒ solved by installing protective Cu-foil "mini-shroud" around detectors

GERDA Phase I detectors

- Enriched coaxial (17.67 kg): 5 from Heidelberg-Moscow 3 from IGEX
- Enriched BEGe (3.63 kg): 5 new (Phase II design)
- 1 non-enriched coaxial
- Deployment:

Data taking until:

November 2011 BEGe: July 2012 May 2013

- Total exposure for $0\nu\beta\beta$ analysis: 21.6 kg·yr
 - 3 data-sets: 17.9 kg·yr "golden", 1.3 kg·yr "silver", 2.4 kg·yr "BEGe"
- ANG 1 and RG 3 stopped soon after deployment, RG 2 near the end. GD35C excluded from analysis due to system instability

GERDA Phase I data analysis

Analysis cuts:

Background data:

blinded until all analysis procedures fixed

Background level improvement

GERDA

Average background at $Q\beta\beta$: HdM: 0.16 cts/(keV·kg·y) GERDA "golden": 0.02 cts/(keV·kg·y)

Background γ -lines typically ~10× lower than HdM (except for ⁴²K).

Before unblinding: background model

"Gold" data allow good-statistics fit Main background sources:

▶ ⁴²K

- Th and U(or Ra) contamination in materials near detectors
- Ra and Po contamination of detector surfaces (including α decays)

Background near $Q_{\beta\beta}$ flat (no lines).

Signals recorded via FADC with 50 ns to 80 ns time resolution \rightarrow **analyse time-structure**

PSD for coaxial detectors:

- measure 50 rise time variables (1,3,5,...99%)
- Neural Network (TMVA/TMIpANN) discriminates events

Trained on ²²⁸Th calibration data:

- > MSE training sample: 1621 keV γ -line (²¹²Bi)
- SSE training sample: 1592 keV DEP of 2.6 MeV line (²⁰⁸TI)

DEP (double escape peak) events have similar spatial structure like $0\nu\beta\beta$

Dušan Budjáš (TUM)

PSD for coaxial detectors

PSD applied to ²²⁸Th calibration spectrum:

Cut is adjusted for each detector to 90% DEP survival.

Dušan Budjáš (TUM)

PSD for coaxial detectors

Furthermore, 2 alternative PSD methods were developed and their results support the validity of the Neural Network method.

Dušan Budjáš (TUM)

Separate analysis based on a single parameter used for **BEGe detectors** (more later). survival efficiency for $0\nu\beta\beta$: **0.92 ± 0.02**

Dušan Budjáš (TUM)

Unblinding

14 June 2013, in Dubna, Russia

Phys. Rev. Lett 111 (2013) 122503

"Neutrinoless Decays Are a No Show Again"

Limit on ⁷⁶Ge half life

$$T_{1/2}^{0\nu} = \frac{\ln 2 \cdot N_A}{m_{enr} \cdot N^{0\nu}} \cdot \mathcal{E} \cdot \epsilon$$
$$\epsilon = f_{76} \cdot f_{av} \cdot \varepsilon_{fep} \cdot \varepsilon_{psd}$$

data set	$\mathcal{E}[\mathrm{kg}\cdot\mathrm{yr}]$	$\langle\epsilon angle$
with PSD		
golden	17.9	$0.619\substack{+0.044\\-0.070}$
silver	1.3	$0.619\substack{+0.044\\-0.070}$
BEGe	2.4	0.663 ± 0.022

⇒ $T_{1/2}^{0v}$ > 2.1 ·10²⁵ yr @ 90% C.L. Combined with HdM and IGEX: $T_{1/2}^{0v}$ > 3.0 ·10²⁵ yr <m_{ee}> < 0.2-0.4 eV

Dušan Budjáš (TUM)

Phys. Rev. Lett 111 (2013) 122503

Past claim strongly disfavoured

H1: signal with $T_{1/2}^{0v} = 1.19 \times 10^{25}$ yr **H0**: background only

	lsotop e	P(H ₁)/ P(H ₀)	Comment
GERDA	⁷⁶ Ge	0.024	Model independent
GERDA+H dM+IGEX	⁷⁶ Ge	0.0002	Model independent
KamLAND- Zen*	¹³⁶ Xe	0.40	Model dependent: NME, leading term
EXO-200*	¹³⁶ Xe	0.23	Model dependent: NME, leading term
GERDA+K LZ*+EXO*	⁷⁶ Ge + ¹³⁶ Xe	0.002	Model dependent: NME, leading term

* with conservative (smallest) NME ratio M_{0v}(¹³⁶Xe)/M_{0v}(⁷⁶Ge) ≈0.4 from:

> F. Simkovic, V. Rodin, A. Faessler, and P. Vogel, Phys. Rev. C. 87, 045501 (2013).
> M. T. Mustonen and J. Engel, (2013), arXiv:1301.6997 [nucl-th].
> P. S. Bhupal Dev et al., (2013), arXiv:1305.0056 [hep-

 $T_{1/2}^{0\nu}$ claim from Mod. Phys. Lett. A 21 (2006) 1547 **not** considered because of the **inconsistencies** (efficiency factors not taken into account $\Rightarrow T_{1/2}^{0\nu}$ calculation incorrect) Ann. Phys. 525 (2013) 269

Dušan Budjáš (TUM)

Phys. Rev. Lett 111 (2013) 122503

ph].

Physics goals of GERDA

<0.01 counts/(kg·y·keV)

GERDA 3 & Majorana [‡] <0.0001 counts/(kg·y·keV)

<0.001 counts/(kg·y·keV)

[‡]GERDA-Majorana LoI: intention to merge for a 1 t experiment, not yet funded

1000 kg·y ‡

21 kg·y (HdM+IGEX+new detectors)

100 kg·y (old + new detectors)

Dušan Budjáš (TUM)

GERDA Phase 1

GERDA Phase 2

GERDA Phase II

- Increase mass: additional 30 enriched BEGe detectors (~ 20 kg)
- new front end readout in close proximity (2 cm) to detectors (noise reduction)
- radiopurity improvements (new cables, detector supports)
- > PSA discrimination with the BEGe's
- Liquid argon veto instrumentation

Phase II tools: Modified Broad-Energy Ge detectors

BEGe advantages:

- 1) smaller p+ electrode \Rightarrow less capacitance \Rightarrow less noise \Rightarrow better energy resolution
- **2)** favourable internal electric field distribution \Rightarrow **powerful PSD capability**

- narrow peak in current signal
- signal shape independent of interaction position (same final trajectory)
- current amplitude depends only on energy of interaction (~95% of volume)

Dušan Budjáš (TUM) [D. Budjáš et al., JINST 4:P10007,2009] [M. Agostini et al., JINST 6:P03005, 2011] 25

Phase II tools: LAr instrumentation

PMT option (Ø500 mm)

— new big lock

low-background PMTs on top & bottom

copper shroud

reflector foil coated with wavelength shifter

- > approach validated in LArGe*
- PMTs available
- > on-going testing in LAr
 - mechanical mock-up in

preparation

SiPM & scintillating fiber option scintillating fibers form cylinder

around Ge array

(light detection

inside & outside)

read-out by KETEK SiPMs

fits in present lock (Ø250 mm)

- approach tested on small scale
- fibers and SiPMs available
- test set-up in preparation

Dušan Budjáš (TUM) *[M. Heisel, Dissertation, University of Heidelberg (2011)]

Phase II tools: Background identification

identification and discrimination of events by PSD and LAr veto:

Performance studies: PSD and LAr veto in LArGe

Performance studies: ²⁴¹Am p+ contact α events

surface	p+ contact	groove inner	groove bottom	groove outer
survival fraction *	< 1.1%	< 12%	< 1.0%	< 1.2%

* 90% confidence-level upper limits results limited by background in test setup; improved measurement analysis under way

Performance studies: surface ⁴²K with BEGe in LArGe

MC cut set to 0.1% survival of β -like events and 20% survival of γ -like events. LAr veto with 100 keV threshold.

expexted surviva	I at Q _{ββ} :
PSD only:	1.2-10 ⁻³
PSD+LAr veto:	0.8-10 ⁻³

```
Veto + "standard" PSD cut :

0\nu\beta\beta survival: 85%

^{42}K survival at Q_{\beta\beta} (2 events):

< 11 \cdot 10^{-3} (90% c.l.)

(noise limiting PSD performance)

Veto + "strong" PSD cut:

0\nu\beta\beta survival: 71%

^{42}K survival at Q_{\beta\beta} (0 events):
```

 $< 5.10^{-3}$ (90% c.l.) (limited by avaliable statistics)

Dušan Budjáš (TUM)

500

1000

1500

2000

Energy [keV]

2500

3000

3500

Production of ^{enr}Ge Phase II detectors

S

Phase II background summary: $Q_{\beta\beta}$

Background goal: $< 10^{-3}$ cts/(keV·kg·yr) **PRELIMINARY**

background	without cuts [cts/(keV·kg·yr)]	PSD survival	LAr veto survival	after cuts [cts/(keV·kg·yr)]
²⁰⁸ TI	≤ 0.01	0.4	4·10 ⁻³	≤ 1.6·10 ⁻⁵
²¹⁴ Bi	≤ 0.01	0.25	0.3	≤ 7.5·10 ⁻⁴
⁶⁰ Co	≤ 4·10 ⁻⁴	0.01	0.02	≤ 8·10 ⁻⁸
⁶⁰ Co (in Ge)	≤ 4·10 ⁻⁴	0.01	0.02	≤ 8·10 ⁻⁸
⁶⁸ Ga (in Ge)	≤ 0.015	0.05	0.2	≤ 3·10 ⁻⁵
²²⁶ Ra (α on p+)	≤ 1.5·10 ⁻³	< 0.03	-	< 3·10 ⁻⁵
⁴² Κ (β on n+)	~0.2	< 0.05	0.68	< 0.86·10 ⁻³

PSD and veto combined acceptance of $0\nu\beta\beta$ -decay events is ~86%