First results of neutrinoless double beta decay search with the GERmanium Detector Array "GERDA",

József, Janicskó Csáthy for the GERDA collaboration

GERDA

Thursday, December 5, 13

2

Technische Universität München

 $0\nu\beta\beta$ decay

 2β decay with 2 neutrinos

 2β decay with 0 neutrinos

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{v}_{e}$$

allowed and observed

$$\left(T_{1/2}^{0\nu}\right)^{-1} = F^{0\nu} \cdot \left|\mathcal{M}^{0\nu}\right|^2 \cdot m_{\beta\beta}^2$$
$$\left\langle m_{\beta\beta}\right\rangle^2 = \left|\sum_i U_{ei}^2 m_{\nu i}\right|^2$$

(A,Z)→(A,Z+2) + 2e⁻

violates lepton number conservation

 $M^{0\nu}$ - nuclear matrix element $F^{0\nu}$ - phase space integral depends on the Q value $\langle m_{\beta\beta} \rangle$ - effective neutrino mass

Technische Universität München

Thursday, December 5, 13

$0\nu\beta\beta$ in ⁷⁶Ge

- IGEX no signal $T_{1/2} > 1.6 \times 10^{25}$ yr
- HdM no signal $T_{1/2} \ge 1.9 \times 10^{25}$ yr
- Klapdor-Kleingrothaus *et alii* claim of evidence: $T_{1/2} = 1.9 \times 10^{25}$ yr

H.V. Klapdor-Kleingrothaus et al. / Physics Letters B 586 (2004)

GERDA status

- Goal of Phase I: Re-deploy HdM and IGEX detectors (18 kg) in LAr with a background of 0.01 cts/(keV kg yr), scrutinize the claim
- Status of Phase I: data taking ended with 21.6 kg · y exposure: from Nov. 2011 to May 2013
- Goal of Phase II: background level of 0.001 cts/(keV kg yr) and 100 kg yr exposure
 - Status of Phase II: under construction: 30 new HPGe detectors (~20 kg) are ready to be deployed

5

JJ, Dec. 2013

GERDA at Gran Sasso

JJ, Dec. 2013

6

Technische Universität Munchen

GERDA milestones

- Construction started in 2008
- Cryostat, water tank, clean room ready in 2009
- Dec. 2009 cryostat filled with LAr
- Water-Cerenkov veto completed in 2010

JJ, Dec. 2013

GERDA milestones

- HdM and IGEX detectors refurbished at Canberra
 - Mounted in low-mass holders and deployed in LAr
 - Commissioning runs: 2010 2011
- Physics run with 9 detectors:
 from 2011 Nov. (+5 BEGe in July 2012)

Technische Universität München

Run history

- Total exposure of 21.6 kg yr between Nov. 2011 and May 2013
- 6 coax detectors from Nov. 2011 to May 2013
- + 4 BEGe detectors since June 2012 to May 2013
- Weekly callibration runs with ²²⁸Th source
- Mean resolution at 2 MeV: coax 4.8 keV, BEGe 3.2 keV FWHM

- Background rate stable, except when the new Phase II detectors were inserted
- Data divided in 'golden' 'silver' and 'BEGe' data set
- Background rate golden coax: 1.8x10⁻² cts/(keV kg yr)

GERDA

Full Spectrum

Thursday, December 5, 13

• Dominated by ²¹⁴Bi and ²²⁸Th nearby sources (det. holders etc.) and surface contaminations - ⁴²K and alphas \implies minimal background model

Technische Universität München

- Contribution of remote sources is <u>negligible</u>
- The strongest gamma line is 1525 keV from ⁴²K
- Background model predicts flat background around 2 MeV

 Background model predicts flat background around
 2 MeV - no gamma lines

 Including all possible sources the spectrum do not change

 Predicted BI in the blinded window: 1.7 -2.9 x 10⁻² cts/ (keV kg yr)

Thursday, December 5, 13

• Count-rate under the peaks 10x less than in the HdM experiment

Eur. Phys. J. C (2013) 73:2330

Thursday, December 5, 13

$2\nu\beta\beta$ - $T_{1/2}$

• With only 5.04 kg yr exposure the $2\nu\beta\beta$ T_{1/2} could be already measured

 $T^{2\nu}_{1/2}(^{76}\text{Ge}) = 1.84 \text{ x } 10^{21} \text{ yr}$

J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

Thursday, December 5, 13

Pulse-shape analysis

Thursday, December 5, 13

Pulse-shape analysis

- PSD has to be tuned for each detector, for each run period.
- PSD is tuned to retain 90% of the DEP of the ²²⁸Th 2.6 MeV line. (90%) signal efficiency) \Rightarrow Typical background survival prob. ~60%
- 3 different methods used: ANN, likelihood analysis, pulse-asymmetry cut.
- From the events rejected by one method 90% are rejected by the other methods as well.

Eur. Phys. J. C (2013) 73:2583

Thursday, December 5, 13

GERDA results

2060

No counts in $Q_{\beta\beta} \pm \sigma$

$$T^{0\nu}_{1/2} > 2.1 \text{ x } 10^{25} \text{ yr}$$

(90% C.L.)

Phys. Rev. Lett. 111, 122503 (2013)

data set	$\mathcal{E}[ext{kg·yr}]$	$\langle \epsilon \rangle$	bkg	BI [†])	cts	
without PSD						
golden	17.9	0.688 ± 0.031	76	18 ± 2	5	
silver	1.3	0.688 ± 0.031	19	63^{+16}_{-14}	1	
BEGe	2.4	0.720 ± 0.018	23	42^{+10}_{-8}	1	
with PSD						
golden	17.9	$0.619^{+0.044}_{-0.070}$	45	11 ± 2	2	
silver	1.3	$0.619_{-0.070}^{+0.044}$	9	30^{+11}_{-9}	1	
BEGe	2.4	0.663 ± 0.022	3	5^{+4}_{-3}	0	
1						

in units of 10^{-3} cts/(keV·kg·yr).

Thursday, December 5, 13

Combined results

- All ⁷⁶Ge experiments combined give: $T_{1/2} > 3.0 \times 10^{25} \text{ yr}$
- The claim is disfavored also by the ¹³⁶Xe experiments

H1: signal with $T_{1/2}^{0v} = 1.19 \times 10^{25}$ yr **H0**: background only

	Isotope	P(H ₁)/ P(H ₀)	Comment
GERDA	⁷⁶ Ge	0.024	Model independent
GERDA+HdM +IGEX	⁷⁶ Ge	0.0002	Model independent
KamLAND- Zen*	¹³⁶ Xe	0.40	Model dependent: NME, leading term
EXO-200*	¹³⁶ Xe	0.23	Model dependent: NME, leading term
GERDA+KLZ* +EXO*	⁷⁶ Ge + ¹³⁶ Xe	0.002	Model dependent: NME, leading term

19 JJ, Dec. 2013

Phase II preparation

Strategy for better $T_{1/2}$ limit

- More mass: + ~20 kg
- Better PSD: BEGe detectors
- Cleaner detector holders
- cleaner FE-electronics
- LAr veto

20 JJ, Dec. 2013

Thursday, December 5, 13

Phase II preparation

- From the available 37.5 kg enriched germanium
 30 new detectors were produced (~20 kg)
- 5 of the new BEGe detectors already deployed in Phase I.
- New lock was built to accommodate 7 detector strings, the LAr veto with PMTs and WLS fibers

21 JJ, Dec. 2013

Phase II preparation

- Up to 1000 fold reduction of the Compton background was demonstrated (LArGe)
- In GERDA 10x background reduction is possible only with LAr veto
- Instrumentation is constrained by radiopurity and available space
- Hybrid system with PMTs, WLS fibers + SiPMs

TUM -UGL test stand

Thursday, December 5, 13

Conclusion

- Sept. 30, 2013 the Phase I of GERDA was ended with 21.6 kg yr exposure.
- Background goal of 0.01 cts/(keV kg yr) was achieved
- No indication of $0\nu\beta\beta$ signal $\Rightarrow T_{1/2} > 2.1 \text{ x } 10^{25} \text{ yr}$
- Phase II: 30 new detectors are ready, construction started ...

