Keeping the background low

The GERDA Phase II detectors

S. Hemmer for the GERDA collaboration Università di Padova and INFN Padova

Searching for neutrinoless double beta decay ($0\nu\beta\beta$) with the **GERDA experiment**

If Ονββ observed:

- Lepton number violation $\Delta L=2$
- Neutrino has a Majorana mass term
- Sheds light on absolute neutrino mass scale
- Sheds light on neutrino mass hierarchy

GERDA Collab., Eur. Phys. J. C 73 (2013) 2330 GERDA Collab., J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

GERDA

EROICA

Background reduced by:

- GERDA situated in LNGS underground laboratories: suppression of cosmic ray muons by factor 10⁶ by overlaying rock
- Graded shielding against ambient radiation
- **Rigorous material selection**
- Avoid exposure of detectors to cosmic radiation
- Anti-coincidence between detectors

New detectors for GERDA Phase II: Broad Energy Germanium (BEGe) detectors for improved Pulse Shape Analysis (PSA)

BEGe detector: strongly non-linear field allows improved PSA

The BEGe production and test chain: a logistical challenge

Water and steel

shielding for transport

Fast neutrons in cosmic rays produce radio-isotopes in Germanium via spallation reactions (⁶⁰Co, ⁶⁸Ge) **Problem:** Decays of cosmogenic radio-isotopes mimic signal events **Solution:** Minimize exposure of Germanium to cosmic radiation by

- Underground storage
- Transport in shielded containers

Crystal pulling and zone refinement at Canberra in Oak Ridge, USA

Production of enriched ⁷⁶GeO₂ at ECP Zelenogorsk, Russia

Metal reduction and zone

refinement at PPM in

Langelsheim, Germany

Underground storage in Cherokee Caverns, Knoxville

Diode production at Canberra in Olen, Belgium

Underground storage in Rammelsberg Mining Museum

Hades Experimental Research Of Intrinsic Crystal Appliances (HEROICA): **Detector characterization tests at HADES underground facility in Mol, Belgium**

Automated scanning measurements of top and lateral surface with collimated ²⁴¹Am source: Charge collection efficiency Homogeneity of dead layer Position dependence of pulse shapes

Fixed uncollimated sources: ⁶⁰Co: energy resolution, HV scan, active mass measurement • ²⁴¹Am and ¹³³Ba: dead layer thickness ²²⁸Th: PSA parameters

Dead layer thickness with ²⁴¹Am Top scan

E. Andreotti et al., "HEROICA: an Underground Facility for the Fast Screening of Germanium Detectors" submitted to JINST (arXiv: 1302.4277) D. Budjas et al., "Isotopically modified Ge detectors for GERDA: from production to operation" submitted to JINST