

The GERDA experiment. Status and results of data taking.

A. Lubashevskiy for the GERDA collaboration Max-Planck-Institut für Kernphysik, Heidelberg

Introduction

The study of neutrinoless double beta $(0\nu\beta\beta)$ decay is a powerful approach to investigate fundamental properties of neutrinos.

Part of H-M Collaboration, claimed evidence for $0\nu\beta\beta$ decay observation with the best fit $T_{1/2} = 1.19 \times 10^{25}$ yr [1].

The GERDA experiment (GERmanium Detector Array [2]) is a low background experiment aims to search for the $0\nu\beta\beta$ decay of ⁷⁶Ge. The aim of GERDA is to test the claim of discovery by part of Heidelberg-Moscow Collaboration, and, in a second phase, to achieve much better sensitivity than recent experiments.

Phase I: Deployed 8 existing enriched detectors (18 kg total), 3 natural HPGe detectors (in total 7.6 kg of natural Ge) and 5 enriched BEGe (3.6 kg from 7/07/2012)

Phase II: In addition new enriched BEGe detectors with total mass of about 20 kg will be incorporated together with liquid

argon (LAr) scintillation veto.

Experimental setup

at LNGS GERDA experiment located underground laboratory (Italy). The rock overburden is equivalent to 3500 m.w.e.

GERDA background reduced by:

- Usage of bare HPGe detectors, enriched by 86% of ⁷⁶Ge, low mass radioactive pure holders.
- Germanium detectors deployed in a cryostat with 64 m³ LAr, which shields from the radiation and cools them down.
- Steel tank containing 590 m³ ultrapure water equipped with Cerenkov μ -veto.
- Proper material selection and avoiding irradiation of the detectors.
- Anti-coincidence between different detectors is used during the analysis.
- Location in LNGS reduces μ flux (in ~ 10⁶ times) and neutron flux induced by cosmic radiation.

Results and discussion

Resolution of enriched detectors

Accumulated exposure up to 02/05/2013: Enriched coaxial: 18.6 kg·yr Natural: 6.05 kg·yr Enriched BEGe: 2.27 kg·yr

Measurements of $T^{2\nu}_{1/2}$ [3]

9/11/2011: Phase Start in GERDA. 8 detectors HPGe coaxial made from material detectors enriched in ${}^{76}\text{Ge} + 3$ detectors from Ge deployed. natural were Resolution 4.2-5.3 keV at 2.6 MeV (FWHM) has been obtained. 6 enriched detectors used for analysis.

previous experiments

experiment diode environment	diodes	ΔE (keV)	exposure (kg yr)	background index 10 ⁻² cts/(keV kg yr
IGEX [30-33]				
vacuum, Cu enclosed	enr	2000-2500	4.7	26
HDM [62]				
vacuum, Cu enclosed	enr	2000-2100	56.7	16
GERDA commissioning				
LAr	nat	1839-2239	0.6	18 ± 3
LAr, Cu mini-shroud	nat	1839-2239	2.6	5.9 ± 0.7
ditto	enr	1839-2239	0.7	$4.3^{+1.4}_{-1.2}$
GERDA Phase I				
LAr, Cu mini-shroud	nat	1839-2239*	1.2	$3.5^{+1.0}_{-0.9}$
LAr (diodes AC-coupled)	nat	1839-2239*	1.9	$6.0^{+1.0}_{-0.9}$
LAr, Cu mini-shroud	enr	1939-2139*	6.1	$2.0^{+0.6}_{-0.4}$

100 keV energy region is $0.024 \text{ cts/(keV}\cdot\text{kg}\cdot\text{yr}).$ Excluding higher background short period in July 2012: $0.017 \pm 0.003 \text{ cts/(keV}\cdot\text{kg}\cdot\text{yr}).$

Blinded region will be open in June 2013!

Pulse shape analysis of the BEGe detectors is a powerful tool to reject background events like multi-side events and surface events.

Examples of the pulses from BEGe detector

novel methods of the background suppression [6] lock for Ge-detector deployment copper cryostat

LArGe – low background test facility to study

inner $\emptyset = 90$ cm, height = 205 cm LAr volume = $1 \text{ m}^3 (1.4 \text{ t})$ coated with WLS mirror foil **PMTs**

- Currently about 20 kg of enriched BEGe detectors has been produced and tested in vacuum cryostat in Hades.
- 5 of enriched BEGe have been already tested in GERDA. Average resolution of them in Phase I configuration is 3.08 keV.
- Installation of the GERDA Phase II will start

in June 2013.

²²⁸Th suppression in LArGe (source close to the detector) [6]

References:

[1] H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B586, 198 (2004) [2] H.-K.Ackermann et al., Eur. Phys. J. C 73 (2013) 2330. [3] M.Agostini et al., J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110.

[4] D. Budjas et al., JINST 4 (2009) P10007. [5] M. Agostini et al., J. of Instrumentation (JINST), 6 (2011) P03005. [6] M. Heisel, PhD thesis, 335 (2011).