Dead Layer and Active Volume Determination for GERDA Phase II

Björn Lehnert

on behalf of the GERDA Collaboration

DPG Spring Meeting 05/02/2013 Dresden

Institut für Kern- und Teilchenphysik

Dead Layer (DL) of BEGe Detectors

- Creating the contacts is the last production step
- n+ contact: Li is diffused in a bath. Then annealed in furnace:
 0.5 1.0 mm DL
- p+ contact: B implantation with 75 keV ion beam:
 0.6 microns DL

• Thick n + DL determines active detector volume

• Cannot be determined from production process

Active Volume (AV) of BEGe Detectors

DL = Dead LayerAV = Active Volume

- The AV is essential for all GERDA physics analysis
- We measure the DL but we need to know the AV
- The AV uncertainty for Phase I coaxial detectors is the dominating systematic uncertainty (5%) <u>arXiv:1212.3210</u> [nucl-ex]
- Measure 30 detectors in a short time

Outline

Part I: Methods

Part II: Systematic uncertainties

How to Measure the DL Thickness?

• Compare exp. spectrum with MC spectra with various DL thicknesses

• Choose MC spectrum that fits best the exp. spectrum.

• In spectrum: Choose good observable e.g. peak counts or ratio of peak counts

Monte Carlo & Dead Layer Post Processing

- One MC simulation with full hit information
 - $\bullet~$ Particle tracking down to 0.001mm / 250eV

• Posterior volume cuts for different DL thicknesses yields the respective MC spectra

• 150 DL variations from 0 to 1.5mm

Assumption in MC: homogeneous n+ DL with various thickness

Energy Distribution inside a BEGe (133Ba)

60Co Spectrum

- Compare directly peak counts in MC and experimental spectrum
 - Large and many systematic uncertainties
- Both peaks 1173 keV and 1333 keV probe the volume but we infer a DL thickness
- DL/AV value is only correct if assumption of homogeneous DL thickness is correct

8

• Interesting probes possible:

- DEP: probes mainly the corners of the detector
- SEP: probes mainly the top volume of the detector
- 2.6MeV probes the center volume
- No systematic uncertainties from the source and outside geometry

228Th Spectrum

x -pos

-2

radius²

Propagation of Uncertainties

Relative change of observable between 0.0 and 1.5mm DL

Method	"Sensitivity"	What is probed	
241Am 59keV / 100keV	67%	Surface only	
133Ba 89keV / 356keV	39%	Surface vs top volume	
60Co 1173keV or 1333keV	24%	Center volume	
228Th 2.6MeV/DEP	13%	Center volume vs corner	
228Th SEP/DEP	12%	Top volume vs corner	

• Systematics propagated from observable to DL to AV

Different Systematics (example of one detector)

		Systematic +-DL[%]	133Ba	241Am	60Co
11-3-13461671 11-13-16-16-16-16-16-16-16-16-16-16-16-16-16-		MC statistics	0.4	1.4	0.1
Mont	te Carlo	Geant4 physics processes	7.2	3.2	24.9
	Sourco	Gamma line probabilities	2.5	2.9	0.2
		Source geometry	0.1	<0.1	0.1
Sou		Source material	<0.1	1.9	0.1
	Source	Source distance			3.7
		Source activity			18.6
C	Detector	Detector dimensions			18.6
		Detector distance to endcap			1.9
	Cryostat	Cryostat endcap thickness	1.0	0.5	0.9
	DAQ	Cryostat detector cub	0.3	<0.1	0.4
		DAQ dead time			0.2
		Statistical Errors	1.3	1.8	0.1
Summation in quadrature		7.8	5.3	36.5	
DL systematics are propagated		91.4	91.2	89.9	
into the AV fraction [%]		± 0.7	± 0.5	± 3.8	

Results, Limitations and Outlook

We observe a discrepancy between surface and volume probes for many detectors

12

DL is what we measure but the AV is what we need

• Is the assumption of a homogenous DL thickness correct?

- Surface raster scans (pictures)
- $\bullet\,\mathrm{AV}$ dependance on HV
- AV dependance on DAQ settings
- Investigation of transition layer

Conclusion

•BEGe active volumes are an essential part of all GERDA physics analysis in Phase II

- •The active volume is determined via the dead layer with different methods (241Am, 133Ba, 60Co, 228Th)
- •Each method probes different parts of the detector (surface, bulk, corners)
- •Systematics depending on method $\pm 1\%$ AV fraction (241Am / 133Ba) and $\pm 4\%$ (60Co)
- •Ongoing investigation of discrepancy of methods

Acknowledgement:

We kindly thank the ZIH @ TU Dresden for the supply and support of the CPU farms DEIMOS and ATLAS for the Monte Carlo simulations.