

Investigations and development of the suppression methods of the background in the LArGe low-background test facility for the GERDA experiment

> A.V. Lubashevskiy on behalf of GERDA collaboration, Max-Planck-Institut für Kernphysik, Heidelberg

Max-Planck-Institut Für Kernphysik

Nucleus-2012

Motivation

Unexpected ⁴²Ar background

For the estimate of the ⁴²Ar concentration in liquid Ar in GERDA cryostat, as performed in the **proposal** of GERDA for estimation of the **limit of** ⁴²Ar/^{nat}Ar < 3·10⁻²¹ [Barabash et al., 2002] has been taken into account. In the later paper it was <4.3 10⁻²¹ [V.D. Ashitkov et al., 2003].

Already during first **commissioning** runs with non-enriched detectors it was found that the intensity of 1525 keV peak from ⁴²K (daughter of ⁴²Ar) **at least is 10 times higher** than expected from the limit [Bar02] assuming homogeneous distribution of ⁴²Ar. (It will be shown later that it was additionally increased by electric field) **Possible explanation:** ⁴²K **ion collection on the surface by E-field.**

LArGe test facility

LArGe is a low background test facility, which has been created in order to investigate the possibility to suppress background by using anticoincidence with liquid Ar scintillation signal detected by PMTs.

⁴²K collection by encapsulated detector

Measurements with a germanium detector have been performed in LArGe (in a "no-source" mode) for investigation of the collection processes of ⁴²K. The detector was fully **encapsulated** by a PTFE/Cu/PTFE sandwich.

⁴²Ar source production & spiking

For further detailed investigation of the collection processes of ⁴²K and for direct estimation of the activity of ⁴²Ar well-known amount of the activity of ⁴²Ar has been introduced into the LArGe volume.

Screening at Garching and LNGS. Estimated activity of ⁴²Ar is **5.18±0.91 Bq**

⁴²K spectrum

After dissolving of ⁴²Ar into LArGe count rates under the peak increased by about factor of 40 with respect to the measurements with natural Ar.

Spectrum of GTF44 with dissolved Ar42, summation of all runs, 83.6 days

Dependence of ⁴²K count rate

Intensity of ⁴²K line shows similar behavior depending on the applied negative HV both for the natural and spiked Ar cases.

Estimations of the activity of ⁴²Ar

With well-known activity at different HV biasing of the encapsulation it is possible estimate to directly the abundance of ⁴²Ar in natural LAr using ratio of the count rates. Assuming that there is no significant influence of the collection properties of ⁴²K in LAr after dissolving it inside LArGe, we can estimate concentration of ⁴²Ar. Average value of the activity is **86.2±4.5(stat)±17.6(system)** μ Bq/kg. This corresponds to ⁴²Ar concentration: ⁴²Ar/^{nat}Ar = 8.5·10⁻²¹.

Independent estimations from GERDA background measurements in field-free configuration gives: (92.8±5.2±4.5) μBq/kg.

GERDA phase II detectors: BEGe

PSD cut determination

Suppression of ⁴²Ar by PSD

We can dramatically suppress background beta events of $^{\rm 42}{\rm K}$ applying PSD cut obtained from $^{\rm 228}{\rm Th}$ calibration .

Suppression of ⁴²Ar by PSD+PMT

Part of the experimental spectrum of BEGe detector in LArGe with 42Ar with HV on the PMT, 19.6 days

Suppression of ⁴²Ar by PSD+PMT

Suppression of ⁴²Ar by PSD+PMT

Energy region, keV	Before cut	PMT veto only	98% PCP cut +PMT	PCP+ 90% MSE +PMT	PCP+ 75% MSE +PMT	PCP+ 65% MSE +PMT
1520-1529	405	151 (39%)	150 (38%)	9 (2.3%)	5 (1.2%)	5 (1.2%)
1989-2089	143	113 (82%)	107 (77%)	0	0	0
1839-2239	610	470 (80%)	454 (77%)	2 (0.3%)	0	0
1540-3000	1640	1265 (80%)	1223 (77%)	19 (1.2%)	5 (0.3%)	4 (0.3%)

Upper limit on the 90% PSD + PMT acceptance in 400 keV is <0.97 % [90% c.l.] MC predictions: PMT veto survivals are 68 % (using 100 keV threshold).

PSD veto survivals are 0.12%.

Acceptances in the table corrected on the PMT veto acceptance 96.6%.

⁴²Ar background studies

Estimation of the background count rate from ⁴²K in GERDA with bare BEGe without cut:

0.29-0.45 cts/(kg year keV). (standard biasing scheme & w/o MS)

Limit from the current measurements after 90% PSD + PMT cut:

 $<(2.8-4.3) \cdot 10^{-3} \text{ cts}/(\text{kg year keV}).$

MC predictions:

25.06.2012

 $(2.4-3.7) \cdot 10^{-4} \text{ cts/(kg year keV)}.$

Suppression required for GERDA Phase II (10⁻³ cts/(kg year keV)) can be achieved **even in a non-free-field configuration**.

BEGe detector in AC mode

Measurements with BEGe detector in AC mode allow to ground the surface and to greatly suppress collection of the ions by electric field.

PRELIMINARY!

	Normal mo	de, 17.8 days	AC mode, 10.9 days		
Energy range, keV	Counts	Cts /(kg d)	Counts	Cts /(kg d)	
1510-1540	559	36.1(15)	72	7.6(9)	
1540-3000	1571	101.6(26)	124	13.0(11)	
1989-2089	130	8.4(7)	13	1.4(4)	

Conclusion

- Investigations of the background caused by ⁴²Ar has been performed in the low-background test facility LArGe.
- Comparison between count rates for the natural and spiked Ar gives an ⁴²Ar concentration in natural LAr. Preliminary estimation of the activity is 86.2±4.5(stat)±17.6(system) μBq/kg.
- It was proven that PSD is an effective method to suppress background from 42 K for GERDA Phase2. The limit on the suppression factor in ROI of $0\nu\beta\beta$ obtained for the BEGe detector together with PMT veto is higher than 100 times.
- Field-free configuration allows to suppress background from ⁴²K.
 Measurements with detector in AC mode shows 5-8 times reduction.
- Results from current measurements indicates that required suppression for ⁴²K background can be achieved in GERDA Phase II experiment.

Back up slides

⁴²K collection

⁴²K location

Comparison between simulation and experiment gives an important information about ⁴²K location. At least a big fraction of ⁴²K ions should be located near detector to explain experimental data.

LArGe test facility

Measurements with LArGe shows very good suppression of the background. For internal ²²⁸Th calibration suppression factor 5000 in ROI has been obtained.

Phase II background summary: $Q_{\beta\beta}$

Background goal: < 10⁻³ cts/(keV·kg·yr) **PRELIMINARY**

background	without cuts [cts/(keV·kg·yr)]	PSD survival	LAr veto survival	after cuts [cts/(keV·kg·yr)]	
²⁰⁸ TI	≤ 0.01	0.4	4·10 ⁻³	≤ 1.6·10 ⁻⁵	а
²¹⁴ Bi	≤ 0.01	0.25	0.3	≤ 7.5·10 ⁻⁴	а
⁶⁰ Co	≤ 4·10 ⁻⁴	0.01	0.02	≤ 8·10 ⁻⁸	а
⁶⁰ Co (in Ge)	≤ 4·10 ⁻⁴	0.01	0.02	≤ 8·10 ⁻⁸	a,b
⁶⁸ Ga (in Ge)	≤ 0.015	0.05	0.2	≤ 3·10 ⁻⁵	b,c
²¹⁰ Po ($lpha$ on p+)	≤ 4·10 ⁻³	< 0.08	-	< 3.2.10-4	
⁴² Κ (β on n+)	0.29 – 0.45	1.2·10 ⁻³	0.68	(2.4 – 3.7) ·10 ⁻⁴	b,d

PSD and veto combined acceptance of $0\nu\beta\beta$ -decay events is ~86% (with good read-out electronics performance; in case of increased noise, signal acceptance or background suppression will be reduced)

Comments:

^a observed anti-correlation of PSD and veto not taken into account

^b detector anti-coincidence not taken into account

^c includes additional suppression by factor 5 via ⁶⁸Ge 10 keV X-ray delayed anti-coincidence
 ^d reducing ⁴²K ion attraction to detector surfaces can strongly reduce background rate
 ^{25.06.2012}
 Dušan Budjáš (TUM)

2νββ

