Experimental review on neutrinoless double beta decay

GGI Neutrino and Invisibles meeting June 26, 2012

Laura Baudis, Universität Zürich

Neutrinos and masses of elementary particles

• Neutrinos: much lighter than other known particles

Double beta decay

- The decay with emission of 2 neutrinos was observed in more than 10 different nuclei: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U
- The observed energy spectrum of the two electrons is continuous, up to the Q-value

$$\Gamma^{2\nu} = \frac{1}{T_{1/2}^{2\nu}} = G^{2\nu}(Q,Z)|M^{2\nu}|^2 \qquad G^{2\nu} \propto (G_F \cos\theta_C)^4 Q^7 \left(1 + \frac{Q}{2} + \frac{Q^2}{9} + \frac{Q^3}{90} + \frac{Q^4}{1980}\right)$$

$$Q = E_{e1} + E_{e2} + E_{v1} + E_{v2} - 2m_e$$

Neutrinoless double beta decay

• More interesting: the decay mode without emission of neutrinos ("forbidden" in the SM, since $\Delta L = 2$)

$$\Gamma^{0\nu} = \frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(Q, Z) |M^{0\nu}|^2 \frac{|m_{\beta\beta}|^2}{m_e^2} \qquad n \qquad p \\ G^{0\nu} \propto (G_F \cos\theta_c)^4 \cdot \left[\frac{Q^5}{30} - \frac{2Q^2}{3} + Q - \frac{2}{5}\right] \propto (G_F \cos\theta_c)^4 \cdot Q^5 \qquad n \qquad p \\ for each or each of the decay \\ for each or each of the decay \\ g = E_{e1} + E_{e2} - 2m_e \\ Energy [keV]$$

Matrix elements

FIG. 7: (Color online) Neutrinoless double beta decay transition matrix elements for the different approaches: QRPA [5, 6], the SM [8–10], the projected HFB method [14] and the IBM [15]. The error bars for the QRPA are calculated as the highest and the lowest values for three different single nucleon basis sets, two different axial charges $g_A = 1.25$ and the quenched value $g_A = 1.00$ and two different treatments of short range correlations (Jastrow-like [25] and the Unitary Correlator Operator Method (UCOM) [26]). The radius parameter is as in this whole work $r_0 = 1.2$ fm.

arXiv:1001.3519

Matrix elements: vary by a factor of 2-3 for a given A

Effective Majorana neutrino mass

• $|m_{\beta\beta}|$ is a mixture of m₁, m₂, m₃, proportional to the U_{ei}², where U_{ei} are complex entries

$$|m_{\beta\beta}| = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{i(\alpha_1 - \alpha_2)} + m_3|U_{e3}|^2 e^{i(-\alpha_1 - 2\delta)}$$

• where U = neutrino mixing matrix, $c_{ij} = cos\theta_{ij}$, $s_{ij} = sin\theta_{ij}$, $\alpha_1, \alpha_2 = Majorana$ phases

Remark: here the exchange of a light neutrinos is considered; many other contributions are possible (Majoron, heavy Majorana neutrino exchange, right-handed currents, SUSY, etc)

For a recent review, see: http://xxx.lanl.gov/pdf/ 1205.0649.pdf

Experimental sensitivity

• Experiments observe:

$$N^{0\nu}_{\beta\beta} = \frac{a \cdot M \cdot N_A}{A} \frac{\ln 2}{T^{0\nu}_{1/2}} \cdot \epsilon \cdot t$$

• with a non-zero number of background events:

$$N_{bg} = M \cdot t \cdot B \cdot \Delta E$$

a = enrichment

 ϵ = detector efficiency

M = total mass

- t = measuring time
- ΔE = energy resolution
- B = background index

n_{sigma}= confidence level in units of sigma

• The experimental sensitivity is thus:

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{N_A \ln 2}{\sqrt{2}n_{\sigma}} \frac{a \cdot \epsilon}{A} \sqrt{\frac{M \cdot t}{B \cdot \Delta E}}$$

Experimental requirements

 \bullet Experiments thus measure the half life of the decay, $T_{1/2}$

$$T_{1/2}^{0\nu} \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{B \cdot \Delta E}}$$

Minimal requirements:

large detector masses enriched materials ultra-low background noise excellent energy resolution

Additional tools to distinguish signal from background:

angular distribution decay to excited states (gamma-rays) identification of daugther nucleus

Backgrounds for double beta experiments

✤ primordial radionuclides (²³⁸U, ²³²Th, ⁴⁰K) in the detector materials, in the shielding and the concrete/rock (alpha, beta, gamma and neutrons)

✤ cosmic activation of detector materials (⁶⁰Co, ⁵⁴Mn, ⁶⁵Zn,...)

✤ cosmic rays - muons - and secondary particles

✤ radon in air, radon emanation of materials,....

✤ anthropogens (⁸⁵Kr, ¹³⁷Cs, ²⁰⁷Bi,...)

2vββ-events: irreducible background an excellent energy resolution of the detector is crucial

F. Piquemal, Neutrino2012, Kyoto

Experiments: Main Approaches

Source ≠ Detector

Source as thin foil Electrons detected with: scintillator, TPC, drift chamber, semiconductor detectors Event topology Low energy resolution and detection efficiency

Source = Detector (calorimeters)

The sum of the energy of the two electrons is measured Signature: peak at the Q-value of the decay Scintillators, semiconductors, bolometers High resolution + detection efficiency No event topology (unless pixellized)

Source = Detector = Tracker

Source is - for example - the (high-pressure) gas of a TPC Charge and light detected with electron multipliers and/or photosensors Good energy and position resolution, high efficiency

electrons which drift to the TPC anode and generate EL light (or secondary scintillaten potential signal entering the region of interse field (Efp ≈ 3 kV/cm.bar) between the transparent EL grids. This light is recorded by an array of silicon photomultipliers (SiPM) located right behind the EL grids and used for tracking measurement. It is also recorded in the PMT plane behind the cathode for

Existing experimental limits on T_{1/2} and the effective Majorana neutrino mass

Current best sensitivities are around a few 100 meV

Table 1. A list of recent $0\nu\beta\beta$ experiments and their 90% confidence level (except as noted) limits on $T_{1/2}^{0\nu}$. The $\langle m_{\beta\beta} \rangle$ limits are those quoted by the authors using the $M_{0\nu}$ of their choice.

Isotope	Technique	$T^{0\nu}_{1/2}$	$\langle m_{\beta\beta} \rangle ~(\mathrm{eV})$	Reference
48 Ca	CaF_2 scint. crystals	$> 1.4 \times 10^{22} \text{ y}$	<7.2-44.7	14
$^{76}\mathrm{Ge}$	enrGe det.	$> 1.9 \times 10^{25} \text{ y}$	< 0.35	15
$^{76}\mathrm{Ge}$	enr Ge det.	$(1.19^{+2.99}_{-0.50}) \times 10^{25} \text{ y} (3\sigma)$	0.24 - 0.58	16
$^{76}\mathrm{Ge}$	enr Ge det.	$> 1.57 \times 10^{25} \text{ y}$	< (0.33 - 1.35)	17
$^{82}\mathrm{Se}$	Thin metal foils and tracking	$> 3.6 \times 10^{23} \text{ y}$	<(0.89-2.54)	18
$^{96}\mathrm{Zr}$	Thin metal foils and tracking	$> 9.2 \times 10^{21} \text{ y}$	<(7.2-19.5)	19
$^{100}\mathrm{Mo}$	Thin metal foils and tracking	$> 1.1 \times 10^{24} \text{ y}$	<(0.45-0.93)	18
$^{116}\mathrm{Cd}$	116 CdWO ₄ scint. crystals	$> 1.7 \times 10^{23} \text{ y}$	< 1.7	20
$^{128}\mathrm{Te}$	geochemical	$> 7.7 \times 10^{24} \text{ y}$	<(1.1-1.5)	21
$^{130}\mathrm{Te}$	TeO_2 bolometers	$> 2.8 \times 10^{24} \text{ y}$	< (0.3-0.7)	22
$^{136}\mathrm{Xe}$	Xe disolved in liq. scint.	$> 5.7 \times 10^{24} \text{ y}$	< (0.3-0.6)	23
$^{150}\mathrm{Ne}$	Thin metal foil within TPC	$> 1.8 \times 10^{22} \text{ y}$	N.A.	24

S. Elliott, http://arxiv.org/pdf/1203.1070v1.pdf

Current, near-future, future experiments

Existing and proposed experiments

			J	I a second	
Experiment	Isotope	Mass	Technique	Present Status	Location
AMoRE ^{89,90}	$^{100}\mathrm{Mo}$	50 kg	CaMoO ₄ scint. bolometer crystals	Development	Yangyang
CANDLES ⁹¹	48 Ca	$0.35 \ \mathrm{kg}$	CaF_2 scint. crystals	Prototype	Kamioka
$CARVEL^{92}$	48 Ca	1 ton	CaF_2 scint. crystals	Development	Solotvina
COBRA ⁹³	$^{116}\mathrm{Cd}$	183 kg	^{enr} Cd CZT semicond. det.	Prototype	Gran Sasso
$CUORE-0^{69}$	$^{130}\mathrm{Te}$	11 kg	TeO_2 bolometers	Construction - 2012	Gran Sasso
$CUORE^{69}$	$^{130}\mathrm{Te}$	203 kg	TeO_2 bolometers	Construction - 2013	Gran Sasso
$DCBA^{94}$	$^{150}\mathrm{Ne}$	20 kg	^{enr} Nd foils and tracking	Development	Kamioka
$EXO-200^{57}$	136 Xe	160 kg	Liq. ^{enr} Xe TPC/scint.	Operating - 2011	WIPP
EXO^{70}	136 Xe	1-10 t	Liq. ^{enr} Xe TPC/scint.	Proposal	SURF
$GERDA^{71}$	$^{76}\mathrm{Ge}$	$\approx 35 \text{ kg}$	enrGe semicond. det.	Operating - 2011	Gran Sasso
GSO^{95}	$^{160}\mathrm{Gd}$	$2 \tan$	$Gd_2SiO_5:Ce$ crys. scint. in liq. scint.	Development	
KamLAND-Zen ⁹⁶	136 Xe	400 kg	enr Xe disolved in liq. scint.	Operating - 2011	Kamioka
LUCIFER ^{97,98}	82 Se	18 kg	ZnSe scint. bolometer crystals	Development	Gran Sasso
Majorana ^{77,78,79}	$^{76}\mathrm{Ge}$	26 kg	enrGe semicond. det.	Construction - 2013	SURF
MOON ⁹⁹	$^{100}\mathrm{Mo}$	1 t	^{enr} Mofoils/scint.	Development	
SuperNEMO-Dem ⁸⁷	82 Se	$7 \mathrm{kg}$	enrSe foils/tracking	Construction - 2014	Fréjus
$SuperNEMO^{87}$	82 Se	100 kg	enrSe foils/tracking		
NEXT ^{82,83}	136 Xe	100 kg	gas TPC		
SNO + 84,85	150 Nd	55 kg	Nd loaded liq. scint.		

Table 2. A summary list of the $0\nu\beta\beta$ proposals and experiments.

Steve Elliott: http://arxiv.org/pdf/1203.1070v1.pdf

Recent results

- Liquid xenon TPC: 175 kg LXe, 80.6% enriched in 136Xe
- Charge and light readout (triplet wire channels and large area avalanche photodiodes)
- Drift field: 376 V/cm

- So far, 2 data taking phases
- First measurement of ¹³⁶Xe 2-neutrino half life; limit on the 0-neutrino mode

Data taking phases and Xenon Purity

EXO-200: resolution and calibration

 $\sigma_{Tot}^2 = p_0^2 E + p_1^2 + p_2^2 E^2$

• Good energy resolution by linear combination of scintillation and charge signals

KAMLAND-Zen

- Scintillator loaded with xenon
- 320 kg 90% enriched ¹³⁶Xe so far (more than 600 kg in the Kamioka mine)
- Advantages: huge and clean (U: 3.5e-18 g/g, Th: 5.2e-17 g/g) running detector
- Xe-LS can be purified, and is highly scalable
- No escape or invisible energy from gammas and beta: good background identification
- Disadvantage: relatively poor energy resolution
- no beta/gamma discrimination
- limited LS composition

KamLAND-Zen: installation

balloon and corrugated tube deployment

mini-balloon inflated with dummy LS and then replaced with Xe-loaded LS density tuning finished and tubes to be extracted

KamLAND-Zen

KamLAND-Zen: energy calibration and lowbackground spectrum

Peak around the Q-value; however, peak position is different

Ge detectors in inquid argon (U/Th in LAr < 7x10⁻⁴ µBq/kg)

• Physics run started on November 9, 2011

GERDA Calibration

Energy resolution: ~ 4.5 - 5 keV (FWHM) at 2.6 MeV

GERDA low-background spectrum

- Background goal of ~ 10⁻² events/(kg yr keV) was reached
- Phase II (BEGe) detectors in production and testing
- LAr instrumentation (PMTs or SiPM & scintillating fibers) in development
- End of phase I and start of phase

GERDA low-background spectrum

• Analysis of 2-neutrino decay mode is in progress

Summary

- Two-neutrino decay mode was measured for the first time in ¹³⁶Xe
- Xenon experiments provide competitive limits to germanium for the neutrinoless mode
- Several experiments are taking data, new results are expected soon
- Experiments under construction (or phase II of existing experiments) should achieve a sensitivity of 50 - 100 meV
- To go beyond, much lower backgrounds and larger masses are needed
- Tracking will be important to confirm a potential signal

Let us hope that...

• this prediction is true - it could be probed with future double beta experiments!

End

Double beta decay

 If simple β⁻ or β⁺-decay is forbidden on energetic grounds a nucleus can decay through a double beta mode:

$$^{106}_{48}Cd \rightarrow ^{106}_{46}Pd + 2e^+ + 2v_e$$

• The probability for a decay is very small, the mean lifetime of a nucleus is much larger than the age of the universe $(\tau_{U} \sim 1.4 \times 10^{10} \text{ a})$

$$\tau_{2v} \approx 10^{20} a$$

- This is indeed a very rare process (as for instance proton decay, which was not yet observed)
- Nonetheless if one uses a large amount of nuclei, the process can be observed experimentally

Nuclear charge Z