

The XXV International Conference on Neutrino Physics and Astrophysics June 3-9 2012 Kyoto, Japan

Results from GERDA

Kyoto June 6, 2012

Peter Grabmayr Eberhard Karls Universität Tübingen, Germany

for the GERDA Collaboration

the energy spectra in GERDA

difference in shapes for natural and enriched diodes (7 % vs. 86 % ⁷⁶Ge)

low background, few γ lines \Rightarrow more precise $T_{1/2}^{2\nu}$

no PSA, blinding @ $Q_{\beta\beta} = 2039 \text{ keV}$

summed electron energy spectrum in GERDA

exposure : 6.1 kg yr

6.6.2012 Kyoto, Neutrino

6.6.2012 Kyoto, Neutrino

the search for the $0\nu\beta\beta$ decay in ^{76}Ge

concept: diodes enriched in ⁷⁶Ge on strings in liquid argon (Lar) @ LNGS

we learn from the summed electron spectrum:

blinding 2019 – 2059 keV statistics: enriched 6.10 kg yr 1.11.2011 – 21.5.2012

establish analysis procedures to be employed on $0\nu\beta\beta$ data after unblinding

outline:

1) Phase I

2) Phase II (starting early 2013)

the GERDA Collaboration

~ 100 members 19 institutions 6 countries

^a) INFN Laboratori Nazion ^b) Institute of Physics, Ja ^c) Institut für Kern- und Teilchenphysik ^d) Joint Institute for ^e) Institute for Reference Ma f) Max Planck Institut ^g) Dipartimento di Fisica, ^h) INFN Mila ^{*i*}) Dipartimento di Fisica, Università ^j) Institute for Nuclear Research of t ^k) Institute for Theoretical as ^{*l*}) Russian Research Cente ^m) Max-Planck-Instit ⁿ) Physik Department E15, 7 ^o) Dipartimento di Fisica e Astro ^p) INFN ^q) Shanghai Jiaoto ^r) Physikalisches Institut, Eberhard ^s) Physik Institut der U:

6.6.2012 Kyoto, Neutrino

M. Agostiniⁿ, M. Allardt^c, E. Andreotti^e, A.M. Bakalvarov^l, M. Balata^a, I. Barabanov^j, L. Baudis^s, C. Bauer^f, N. Becerici-Schmidt^m, E. Bellotti^{g,h}, S. Belogurov^{k,j}, S.T. Belyaev^l, G. Benato^s, A. Bettini^{o,p}, L. Bezrukov^j, T. Bodeⁿ, V. Brudanin^d, R. Brugnera^{o,p}, D. Budjášⁿ, A. Caldwell^m, C. Cattadori^h, A. Chernogorov^k, F. Cossavella^m, E.V. Demidova^k, A. Denisov^j, A. Domula^c, V. Egorov^d, R. Falkenstein^r, A. Ferella^s, N. Fiuza de Barros^c, K. Freund^r, N. Frodyma^b, A. Gangapshev^{j,f}, A. Garfagnini^{o,p}, S. Gazzana^{f,a}, C. Gotti^{g,h}, P. Grabmayr^r, V. Gurentsov^j, K.N. Gusev^{l,d}, K.K. Guthikonda^s, W. Hampel^f, A. Hegai^r, M. Heisel^f, S. Hemmer^{o,p}, G. Heusser^f, W. Hofmann^f, M. Hult^e, L.V. Inzhechik^j, L. Ioanucci^a, J. Janicskó Csáltyⁿ, J. Jochum^r, M. Junker^{*a*}, S. Kianovsky^{*j*}, I.V. Kirpichnikov^{*k*}, A. Kirsch^{*f*}, A. Klimenko^{*d*,*j*}, K.T. Knoepfle^f, O. Kochetov^d, V.N. Kornoukhov^{k,j}, V. Kusminov^j, M. Laubenstein^a, A. Lazzaroⁿ, V.I. Lebedev^l, B. Lehnert^c, H. Liao^m, M. Lindner^f, I. Lippi^p, X. Liu^q, A. Lubashevskiy^f, B. Lubsandorzhiev^j, A.A. Machado^f, B. Majorovits^m, W. Maneschg^f, G. Marissens^e, A. Michel^m, I. Nemchenok^d, S. Nisi^a, C. O'Shaughnessy^m, L. Pandola^a, K. Pelczar^{*b*}, L. Peraro^{*o,p*}, G. Pessina^{*g,h*}, A. Pullia^{*i*}, M. Reissfelder^{*f*}, S. Riboldi^{*i*}, C. Sada^{o,p}, M. Salathe^f, C. Schmitt^r, B. Scholz^c, J. Schreiner^f, O. Schulz^m, B. Schwingenheuer^f, S. Schönertⁿ, H. Seitz^m, M. Shirchenko^{l,d}, H. Simgen^f, A. Smolnikov^f, L. Stanco^p, H. Strecker^f, M. Tarka^s, C.A. Ur^p, A.A. Vasenko^k, O. Volynets^m, K. von Sturm^r, V. Wagner^f, M. Walter^s, A. Wegmann^f, M. Wojcik^b. E. Yanovich^j, P. Zavarise^a, S.V. Zhukov^l, D. Zinatulina^d, K. Zuber^c, and G. Zuzel^b.

1000

Hall A of LNGS

6.6.2012 Kyoto, Neutrino

the muon veto

66 PMT (8") Cerenkov in the water tank 32 plastic panels with fibre/PMT readout

 μ – Ge timing resolution < 70 ns (decay of cosmogenic isotopes)

overall detection efficiency: $(97.2 \pm 0.3) \%$ $BI_{\mu} < 2*10^{-4} \text{ cts/(keV kg yr)}$ efficiency with energy depos. in Ge : $(99.6 \pm 0.4) \%$

Physikalisches Institut, Kepler Center for Astro and Particle Physics

installation of GERDA Phase I detectors

refurbished by Canberra

low mass holder

3 diodes arranged on 1 string,

Physikalisches Institut, Kepler Center for Astro and Particle Physics

reason for mini-shroud: ⁴²K, resp. ⁴²Ar

Barabash: 42 Ar < 3*10⁻²¹ g/g ; used for proposal < 41 µBq/kg 90% CL

however: collection of ions through E-field from HV

6.6.2012 Kyoto, Neutrino

6.6.2012 Kyoto, Neutrino

LArGe:

previously: $< 41 \mu Bq/kg 90\% CL$

LAr spiked with known amount of ⁴²Ar

determination of ⁴²Ar concentration

GERDA:

Measurement in best 'E-field free' configuration & comparison MC

our measurement: $A = (93.0 \pm 6.4) \mu Bq/kg$ stat.+syst.

6.6.2012 Kyoto, Neutrino

inserted of 1 & 3 string arm: total of 8 enriched + 3 natural diodes in October 2011

2 enriched detectors had problems from the very beginning, removed from physics analysis:

6 enriched detectors with 14.6 kg total mass 3 natural detectors with 7.6 kg total mass

6.6.2012 Kyoto, Neutrino

counts/(keV kg yr) 01 20

10

The GERDA background

2500

energy (keV) ino

intensities of γ lines are sizeably reduced compared to HdM

isotope	energy [keV]	nat Ge–dets (3.2 kg·y)		enrGe-dets (6.1 kg·y)		HdM	ιαιυ
		tot/bck [cnt]	rate [cnt/(kg·y)]	tot/bck [cnt]	rate [cnt/(kg·y)]	rate [cnt/(kg·y)]	HdM/enr
⁴⁰ K	1460.8	85 / 15	$21.7^{+3.9}_{-3.1}$	125 / 42	$13.5^{+2.5}_{-2.2}$	181 ± 2	13
⁶⁰ Co	1173.2	43 / 38	< 5.8	182 / 152	$5.1^{+3.1}_{-3.1}$	55 ± 1	11
	1332.3	31 / 33	< 3.8	93 / 101	< 3.1	51 ± 1	
^{137}Cs	661.6	46 / 62	< 3.2	335 / 348	< 5.9	282 ± 2	> 47
^{228}Ac	910.8	54 / 38	$5.0^{+3.0}_{-3.0}$	294 / 303	< 11.1	29.8 ± 1.6	
	968.9	64 / 42	$6.7^{+3.8}_{-3.1}$	247 / 230	< 15.2	17.6 ± 1.1	
²⁰⁸ Tl	583.1	56 / 51	< 6.5	333 / 327	< 7.6	36 ± 3	
	2614.5	9 / 2	$2.1^{+1.2}_{-1.0}$	10 / 0	$1.5^{+0.7}_{-0.5}$	16.5 ± 0.5	11
$^{214}\mathrm{Pb}$	352	740 / 630	$34.6^{+15.2}_{-12.4}$	1770 / 1688	$13.2^{+11.5}_{-7.9}$	138.7 ± 4.8	11
²¹⁴ Bi	609.3	99 / 51	$14.8^{+4.9}_{-3.5}$	351 / 311	$6.2^{+4.7}_{-4.0}$	105 ± 1	
	1120.3	71 / 44	$8.4^{+3.8}_{-3.4}$	194 / 186	< 6.1	26.9 ± 1.2	
	1764.5	23 / 5	$5.5^{+2.0}_{-1.6}$	24 / 1	$3.6^{+0.9}_{-0.9}$	30.7 ± 0.7	~ 10
	2204.2	5 / 2	$0.8^{+0.9}_{-0.7}$	6/3	$0.4^{+0.4}_{-0.4}$	8.1 ± 0.5	

Physikalisches Institut, Kepler Center for Astro and Particle Physics

The GERDA background index (BI)

BI = 0.020 + 0.006 - 0.004 cts/(keV kg yr)

[68% coverage]

duty factor: usually 95%;

one run not used for physics analysis because of temperature instabilities (overall duty cycle 80%)

6.6.2012 Kyoto, Neutrino

The $T_{1/2}^{2v}$ prelimenary values from fit to data from 6 enriched diodes

binned max. likelihood approach: free parameters: (active mass,enrichment,detect.eff., 40,42 K, 214 Bi, 228 Th*)_{6det}, T_{1/2}^{2v} 600 – 1800 keV range * normalized

authors	data	half live $T_{1/2}^{2\nu\beta\beta}$ [10 ²¹ yr]
IGEX collaboration [1]	Igex	1.45 ± 0.20
HDM collaboration [2]	HdM	$1.55 \pm 0.01(\text{stat}) \stackrel{+0.19}{_{-0.15}}(\text{syst})$
C. Dörr and H.V. Klapdor-Kleingrothaus [3]	HdM	$1.74 \pm 0.01(\text{stat}) \stackrel{+0.18}{_{-0.16}}(\text{syst})$
A.M. Bakalyarov et al. [4]	HdM	$1.78 \pm 0.01(\text{stat}) \stackrel{+0.07}{_{-0.09}}(\text{syst})$
A.S. Barabash, compilation [5]	weighted average	1.50 ± 0.10
Gerda with $\sim 1/10$ statistics of HdM	run 25-30	1.88 ± 0.10 stat+sys added in quadrature
		preliminary

- A. Morales, Nucl. Phys. B. Proc. Suppl. 77 (1999) 335
 J. Morales and A. Morales, Nucl.Phys. B Proc.Suppl. 114
- [2] H.V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12 (2001) 147, (2003) 141
- [3] C. Dörr and H.V. Klapdor-Kleingrothaus, Nucl. Inst. Meth. A 513 (2003) 596
- [4] A.M. Bakalyarov et al., Phys. Part. Nucl. Lett. 2 (2005) 77
- [5] A.S. Barabash, Phys. Rev. C, 81 (2010) 035501

The future

 ⇒ June/July: deploy 5 Phase II enriched BEGe in 1 string arm 14,6 kg Phase I + 3,5 kg Phase II to improve exposure ⇒⇒⇒

⇒ prepare Phase II

crystal pulling completed 9 crystals pulled

26+ enr. diodes (20+ kg)

7 tested 1.7 keV (FWHM) @ 1.3MeV

- \Rightarrow goal: BI = 10⁻³ cts/ (keV kg yr)
 - thickwindow BEGe with advanced PSA performance
 detect I Ar scintillation light as
 - 2) detect LAr scintillation light as active veto

posters by D. Budjas (60-3) <u>M. Heisel (59-2)</u>

6.6.2012 Kyoto, Neutrino

suppression of surface events

$p^{\scriptscriptstyle +}$ contact pulses measured with a $^{\scriptscriptstyle 241} Am \; \alpha$ source

p^+ contact pulses cut tuned to 90% survival of $0\nu\beta\beta$ -like event

see poster by D. Budjas (60-3)

6.6.2012 Kyoto, Neutrino

n⁺ surface events measured with ⁹⁰Sr and ¹⁰⁶Ru β sources

 β n⁺ surface event PSD rejection power demonstrated stable in region 1 - 2 MeV

MC cut set to 20% survival of γ -like events and 0.1% survival of β -like events

good quantitative agreement of simulated suppression with measurement

LAr instrumentation R&D

LArGe test facility

Operation of Phase II detector prototype in LArGe: **Measured** suppression factor at $Q_{\beta\beta}$: ~0.5·10⁴ for a ²²⁸Th calibration source Also: successful read out scintillation light with fibers coupled to SiPMs

LAr instrumentation

- 3rd option: R&D on large area avalanche photodiodes or UV sensitive SiPMs on custom low activity substrates has started
- MC campaign to compare competing options ongoing
- Hardware for PMT and fiber options available & prototype/test setup construction started

see poster by M. Heisel (59-2)

summary

GERDA : searching for the $0\nu\beta\beta$ decay in ^{76}Ge

concept works : diodes enriched in ⁷⁶Ge on strings in liquid argon (Lar) @ LNGS

- GERDA is running and taking data
- statistics: 1.11.2011 21.5.2012 (^{enr}Ge exposure 6.10 kg yr)
- systematics: blinding 2019 2059 keV
- background index (BI): 0.020 +0.006 -0.004 cts/(keV kg yr) [68% coverage]
- ◆ LAr:
 ⁴²Ar (⁴²K) activity determined: (93.0 ± 6.4) µBq/kg
 ⁷⁶Ge
 T_{1/2}^{2v} = (1.88 ± 0.10) 10²¹ yr all results are preliminary !!!

preparations for Phase II progressing well: increase in mass by add. ~20kg (26+ BEGe) & BI = 10⁻³ cts/(keV kg yr)

9 crystals pulled – milestone completed successfully !!

complete Phase I and start Phase II in early 2013