Active background suppression in GERDA Phase II

Dušan Budjáš

Technische Universität München for the GERDA collaboration

http://www.mpi-hd.mpg.de/GERDA

- 1. Backgrounds in GERDA Phase I and II
- 2. Background suppression in GERDA
- 3. Phase II tools
- 4. Studies of active background suppression
- 5. GERDA Phase II background summary
- 6. Background at low energies

- 1. Backgrounds in GERDA Phase I and II
- 2. Background suppression in GERDA
- 3. Phase II tools
- 4. Studies of active background suppression
- 5. GERDA Phase II background summary
- 6. Background at low energies

Backgrounds in GERDA

Backgrounds observed in Phase I:

- > surface α from ²¹⁰Po
- > surface β from ⁴²K (from ⁴²Ar in LAr)
- > γ from Th and Ra decay chains, ⁶⁰Co
- > prompt μ -induced events

Additional bkg expected in Phase II:

- β/γ decays of ⁶⁰Co and ⁶⁸Ga from cosmogenic activation of Ge
- ➤ neutrons

Main background at low-energy: ³⁹Ar

- 1. Backgrounds in GERDA Phase I and II
- 2. Background suppression in GERDA
- 3. Phase II tools
- 4. Studies of active background suppression
- 5. GERDA Phase II background summary
- 6. Background at low energies

GERDA low-background approaches

GERDA Phase I utilises mainly passive background suppression* \Rightarrow present background at Q_{ββ}: 2 · 10⁻² cts/(keV · kg · yr)

GERDA Phase II will introduce **LAr veto** and **detectors with improved PSD** \Rightarrow improve $0\nu\beta\beta T_{1/2}$ sensitivity by factor 10 \Rightarrow reduce background at $Q_{\beta\beta}$ to <10⁻³ cts/(keV · kg · yr)

passive suppression:

(applied before data taking)

- ✓ **shielding:** 1400 m of rock, 3 m of H_2O , 2 m of LAr, E/M Cu shield
- ✓ avoiding background: low-mass detector support structure, material selection (LAr, Cu, PTFE, Si, ...)
- ✓ purification of all components

active suppression:

(applied after data taking)

- ✓ detector anti-coincidence
- ✓ Čerenkov µ-veto
- ✓ pulse-shape discrimination (PSD)
- ✓ anti-Compton veto using LAr scintillation
- * μ-veto and detector anti-coincidence are used in Phase I, but not critical; pulse-shape discrimination will be also used, but is less capable than in Phase II
 Dušan Budjáš (TUM)

- 1. Backgrounds in GERDA Phase I and II
- 2. Background suppression in GERDA
- 3. Phase II tools
- 4. Studies of active background suppression
- 5. GERDA Phase II background summary
- 6. Background at low energies

Phase II tools: Modified Broad-Energy Ge detectors

BEGe advantages:

- 1) smaller p+ electrode \Rightarrow less capacitance \Rightarrow less noise \Rightarrow better energy resolution
- **2)** favourable internal electric field distribution \Rightarrow **powerful PSD capability**

- narrow peak in current signal
- signal shape independent of interaction position (same final trajectory)
- current amplitude depends only on energy of interaction (~95% of volume)

Dušan Budjáš (TUM) [D. Budjáš et al., JINST 4:P10007,2009] [M. Agostini et al., JINST 6:P03005, 2011] 8

Phase II tools: LAr instrumentation

PMT option (Ø500 mm)

— new big lock

low-background PMTs on top & bottom

copper shroud

reflector foil coated with wavelength shifter

- > approach validated in LArGe*
- PMTs available
- on-going testing in LAr
 - mechanical mock-up in

preparation

scintillating fibers form cylinder around Ge array (light detection

SiPM & scintillating fiber option

inside & outside)

read-out by KETEK SiPMs

fits in present lock (Ø250 mm)

- approach tested on small scale
- fibers and SiPMs available
- test set-up in preparation

Dušan Budjáš (TUM) *[M. Heisel, Dissertation, University of Heidelberg (2011)]

Phase II tools: Background identification

identification and discrimination of events by PSD and LAr veto:

- 1. Backgrounds in GERDA Phase I and II
- 2. Background suppression in GERDA
- 3. Phase II tools
- 4. Studies of active background suppression
- 5. GERDA Phase II background summary
- 6. Background at low energies

Performance studies: BEGe PSD

Performance studies: PSD and LAr veto in LArGe

Performance studies: Surface events

Performance studies: ⁹⁰Sr and ¹⁰⁶Ru n+ surface β events

n+ surface β event PSD rejection power demonstrated stable in region 1 - 2 MeV

NSP/MSE cut tuned to 90% survival of $0\nu\beta\beta$

MC cut set to 0.1% survival of β -like events and 20% survival of γ -like (bremsstrahlung) events.

good quantitative agreement of simulated suppression with measurement

Dušan Budjáš (TUM)

Performance studies: surface ⁴²K with BEGe in LArGe

MC cut set to 0.1% survival of β -like events and 20% survival of γ -like events. LAr veto with 100 keV threshold.

expexted survival	l at Q _{ββ} :
PSD only:	1.2-10 ⁻³
PSD+LAr veto:	0.8-10 ⁻³

```
Veto + "standard" PSD cut :

0\nu\beta\beta survival: 85%

^{42}K survival at Q_{\beta\beta} (2 events):

< 11 \cdot 10^{-3} (90% c.l.)

(noise limiting PSD performance)

Veto + "strong" PSD cut:

0\nu\beta\beta survival: 71%

^{42}K survival at Q_{\beta\beta} (0 events):

< 5 \cdot 10^{-3} (90% c.l.)
```

(limited by avaliable statistics)

Dušan Budjáš (TUM)

500

1000

1500

2000

Energy [keV]

2500

3000

3500

Performance studies: ²⁴¹Am p+ contact α events

surface	p+ contact	groove inner	groove bottom	groove outer
survival fraction *	< 1.1%	< 12%	< 1.0%	< 1.2%

* 90% confidence-level upper limits results limited by background in test setup; improved measurement analysis under way

- 1. Backgrounds in GERDA Phase I and II
- 2. Background suppression in GERDA
- 3. Phase II tools
- 4. Studies of active background suppression
- 5. GERDA Phase II background summary
- 6. Background at low energies

Phase II background summary: $Q_{\beta\beta}$

Background goal: $< 10^{-3} \text{ cts/(keV \cdot kg \cdot yr)}$ **PRELIMINARY**

background	without cuts [cts/(keV·kg·yr)]	PSD survival	LAr veto survival	after cuts [cts/(keV·kg·yr)]	
²⁰⁸ TI	≤ 0.01	0.4	4·10 ⁻³	≤ 1.6·10 ⁻⁵	а
²¹⁴ Bi	≤ 0.01	0.25	0.3	≤ 7.5·10 ⁻⁴	а
⁶⁰ Co	≤ 4·10 ⁻⁴	0.01	0.02	≤ 8·10 ⁻⁸	а
⁶⁰ Co (in Ge)	≤ 4·10 ⁻⁴	0.01	0.02	≤ 8·10 ⁻⁸	a,b
⁶⁸ Ga (in Ge)	≤ 0.015	0.05	0.2	≤ 3·10 ⁻⁵	b,c
²¹⁰ Po (α on p+)	≤ 4·10 ⁻³	< 0.08	_	< 3.2.10-4	
⁴² Κ (β on n+)	0.29 – 0.45	1.2·10 ⁻³	0.68	(2.4 - 3.7) .10-4	b,d

PSD and veto combined acceptance of $0\nu\beta\beta$ -decay events is ~86% (with good read-out electronics performance; in case of increased noise, signal acceptance or background suppression will be reduced)

Comments:

^a observed anti-correlation of PSD and veto not taken into account

- ^b detector anti-coincidence not taken into account
- ^c includes additional suppression by factor 5 via ⁶⁸Ge 10 keV X-ray delayed anti-coincidence ^d reducing ⁴²K ion attraction to detector surfaces can strongly reduce background rate

- 1. Backgrounds in GERDA Phase I and II
- 2. Background suppression in GERDA
- 3. Phase II tools
- 4. Studies of active background suppression
- 5. GERDA Phase II background summary

6. Background at low energies

Background at low energies

rate after all cuts in region 30 – 50 keV: 0.05 cts/(keV.kg.d)

(CoGeNT rate in region 12 – 14 keV: ~1.1 cts/(keV.kg.d))

Background at low energies

rate after all cuts in region 30 – 50 keV: 0.05 cts/(keV.kg.d)

(CoGeNT rate in region 12 - 14 keV: ~1.1 cts/(keV.kg.d))

Summary & Conclusions (1 of 2)

- GERDA Phase I provides valuable source of data for estimation of expected background for Phase II
- Phase II will use enhanced pulse-shape discrimination with modified p-type BEGe detectors and LAr veto to reduce background to < 10⁻³ cts/(keV · kg · yr)
- > identify multi-site (γ), p+ (α) and n+ (β) surface events
- results from many experimental studies complemented by simulations show that the Phase II goal is achievable
- main issues and challenges:
 - ²¹⁴Bi: with more Phase I data the background source can be identified and mitigated for Phase II
 - ⁴²K: ion manipulation (as demonstrated in Phase I) can be applied in case the expected PSD suppression is too optimistic
- ²¹⁰Po: α background suppression factor presently limited by test-setup sensitivity – most likely no problem for Phase II
 Dušan Budjáš (TUM)

Summary & Conclusions (2 of 2)

- preliminary study of low energy background at GERDA-LArGe test facility provided an encouraging result: ³⁹Ar continuum removed
- background level can be probably lowered further (the used detector is not an ultra-low background one, and GERDA has lower background rate than LArGe)
- interesting if energy threshold can be reduced (needs low-noise read-out electronics)

Back-up

Pulse shape discrimination with BEGe

Ramo's theorem: (current signal) $I(t) = q \cdot \nabla \phi_W(\vec{r}(t)) \cdot \vec{v}$

q, r, v – charge, position and velocity of charge cluster ϕ_w – weighing potential

- > ~95% volumetric efficiency of **A/E position independence**
- > separation sensitivity: <10 ns (current peaks) \Rightarrow <1.2 mm (interactions; 1D)*
- > I_{max}/E resolution $\approx 0.6\% \Rightarrow \sim 15$ keV sensitivity for 2nd interaction in a 2 MeV MSE

* using 12.10⁻⁶ cm/s hole drift velocity [Bruyneel et al., NIM A 569 (2006) 764]

Pulse shape discrimination with BEGe

