

The GERDA Experiment: Status and Results

Călin A. Ur, INFN Padova for the GERDA collaboration

European Nuclear Physics Conference , Bucharest, Romania, September 17–21 2012

M. Agostiniⁿ, M. Allardt^c, E. Andreotti^e, A.M. Bakalvarov^l, M. Balata^a, I. Barabanov^j, L. Baudis^s, C. Bauer^f, N. Becerici-Schmidt^m, E. Bellotti^{g,h}, S. Belogurov^{k,j}, S.T. Belvaev^l, G. Benato^s, A. Bettini^{o,p}, L. Bezrukov^j, T. Bodeⁿ, V. Brudanin^d, R. Brugnera^{o,p}, D. Budjášⁿ, A. Caldwell^m, C. Cattadori^h, A. Chernogorov^k, F. Cossavella^m, E.V. Demidova^k, A. Denisov^j, A. Domula^c, V. Egorov^d, R. Falkenstein^r, A. Ferella^s, N. Fiuza de Barros^c, K. Freund^r, N. Frodyma^b, A. Gangapshev^{j,f}, A. Garfagnini^{o,p}, S. Gazzana^{f,a}, C. Gotti^{g,h}, P. Grabmayr^r, V. Gurentsov^j, K.N. Gusev^{l,d}, K.K. Guthikonda^s, W. Hampel^f, A. Hegai^r, M. Heisel^f, S. Hemmer^{o,p}, G. Heusser^f, W. Hofmann^f, M. Hult^e, L.V. Inzhechik^j, L. Ioanucci^a, J. Janicskó Csáltyⁿ, J. Jochum^r, M. Junker^{*a*}, S. Kianovsky^{*j*}, I.V. Kirpichnikov^{*k*}, A. Kirsch^{*f*}, A. Klimenko^{*d,j*}, K.T. Knoepfle^f, O. Kochetov^d, V.N. Kornoukhov^{k,j}, V. Kusminov^j, M. Laubenstein^a, A. Lazzaroⁿ, V.I. Lebedev^l, B. Lehnert^c, H. Liao^m, M. Lindner^f, I. Lippi^p, X. Liu^q, A. Lubashevskiy^f, B. Lubsandorzhiev^j, A.A. Machado^f, B. Majorovits^m, W. Maneschg^f, G. Marissens^e, A. Michel^m, I. Nemchenok^d, S. Nisi^a, C. O'Shaughnessy^m, L. Pandola^a, K. Pelczar^b, L. Peraro^{o,p}, G. Pessina^{g,h}, A. Pulliaⁱ, M. Reissfelder^f, S. Riboldiⁱ, C. Sada^{o,p}, M. Salathe^f, C. Schmitt^r, B. Scholz^c, J. Schreiner^f, O. Schulz^m, B. Schwingenheuer^f, S. Schönertⁿ, H. Seitz^m, M. Shirchenko^{l,d}, H. Simgen^f, A. Smolnikov^f, L. Stanco^p, H. Strecker^f, M. Tarka^s, C.A. Ur^p, A.A. Vasenko^k, O. Volynets^m, K. von Sturm^r, V. Wagner^f, M. Walter^s, A. Wegmann^f, M. Wojcik^b E. Yanovich^j, P. Zavarise^a, S.V. Zhukov^l, D. Zinatulina^d, K. Zuber^c, and G. Zuzel^b.

^a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy ^b) Institute of Physics, Jagellonian University, Cracow, Poland ^c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany ^d) Joint Institute for Nuclear Research, Dubna, Russia ^e) Institute for Reference Materials and Measurements, Geel, Belgium ^f) Max Planck Institut für Kernphysik, Heidelberg, Germany ^g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy ^h) INFN Milano Bicocca, Milano, Italy ⁱ) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy ^j) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ^k) Institute for Theoretical and Experimental Physics, Moscow, Russia ¹) Russian Research Center Kurchatov Institute, Moscow, Russia ^m) Max-Planck-Institut f
ür Physik, M
ünchen, Germany ⁿ) Physik Department E15, Technische Universität München, Germany ^o) Dipartimento di Fisica e Astronomia dell'Università di Padova, Padova, Italy ^p) INFN Padova, Padova, Italy ^q) Shanghai Jiaotong University, Shanghai, China ^r) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany ^s) Physik Institut der Universität Zürich, Zürich, Switzerland

~ 100 members 19 institutions 6 countries

Outline

The GERDA experiment

 short introduction

 Status of Phase I

 installation
 measurements & preliminary results

- 3. Perspectives for Phase II
 - the detectors
 - R&D

Physics of the GERDA Experiment

Search for the half-life of the $0\nu\beta\beta$ -decay of ^{76}Ge

Sensitivity of the GERDA Experiment

$$T_{1/2}^{0\nu}(y) > \frac{\log 2 \cdot N_A}{k_{CL}} \cdot \frac{\varepsilon \cdot k_{enr}}{A} \cdot \sqrt{\frac{M \cdot t}{B \cdot \Delta E}}$$

- well established enrichment technique (reasonable cost for > 80%)
 ⇒ enrichment k_{enr} = 86% ⁷⁶Ge
 established detector technologies
 - \Rightarrow large total mass M (expandable)
- very good energy resolution:
 - \Rightarrow small Δ E ~ 2-3 keV
- very good detection efficiency because detectors are made of source material

⇒ **ε ~ 1**

 detector-grade semiconductors are high-purity materials (low background)
 ⇒ small direct contribution to the background index B

Optimize the parameters

Background Sources in GERDA

Source	B [10 ⁻³ cts/(keV kg yr)]					
Ext. γ from ²⁰⁸ Tl (²³² Th)	<<1					
Ext. neutrons	<0.05	Muon veto				
Ext. muons (veto)	<0.03	180 days exposure after enrichment + 180 days underground storage				
Int. ⁶⁸ Ge (t _{1/2} = 270 d)	12					
Int. ⁶⁰ Co (t _{1/2} = 5.27 y)	2.5	30 days exposure after crystal growing				
²²² Rn in LAr	<0.2	Sector of the se				
²⁰⁸ TI, ²³⁸ U in holder	<1					
Surface contamination	<u><06</u>					
Target values: Phase I: B < 10 ⁻² cts/(keV· kg· yr)						
Phase II: B < 10 ⁻³ cts/(keV· kg· yr)						

Background Reduction in GERDA

Background reduction methods

- Underground laboratory
- Material cleaning
- Passive shield (Cu&Pb&LAr)
- Muon veto

- Pulse shape analysis vs. detector segmentation
- Detector anti-coincidence
- R&D: LAr scintillation

Mounting of GERDA 2008-2010

Commissioning with ^{nat}Ge Det.

- Summer/autumn 2009: integration test of phase I detectors, FE, lock, DAQ, LAr dewar
- Apr/May 2010: Installation of single-string lock in the GERDA cleanroom
- May 2010: Deployment of FE & detector mock-up, followed by first deployment of a of non-enriched det.
- June 2010: Water tank filling
- June 2010: Commissioning run with 3 natGe detectors
- cooling cycles
- grounding problems
- characterization runs with Th source
- optimizing energy reconstruction algorithms from digital data
- long-term background measurement
- long-term stability of naked Ge detectors operated in LAr/LN₂ experimentally proved

GERDA - Start of Phase I

Inauguration – November 2011

Phase I Detectors

Detector	Total mass	HV		
	(g)	(V)		
ANG 1	958	3500		
ANG 2	2833	4000		
ANG 3	2391	3000		
ANG 4	2372	3000		
ANG 5	2746	1800		
RG 1	2110	4500		
RG 2	2166	4000		
RG 3	2087	3500		
GTF 32	2321	3200		
GTF 42	2467	3000		
GTF 44	2465	3500		
GTF 45	2332	1500		
GTF 110	3046	3000		
GTF 112	2965	2500		
Prototype 1560 3000				

- 8 enrGe (HdM&IGEX) + 6 natGe (GTF) p-type coaxial Ge detector refurbished
- enrGe mass:1-3 kg (total 17.9 kg)
- C_{det} = 30-40 pF
- deployed in strings of 3 dets.
- mounted in low-mass Cu holders

- HV contact: on Li surface by pressure
- readout contact: in borehole spring-loaded
- all the detectors have been tested naked in LAr and perform well (I-V & R < 3 keV @ 1.332 MeV).

Deployment of Phase I Detectors

low-mass Cu holder

October 2011 1 & 3 string arms

1 string

2 ^{nat}Ge detectors 4.65 kg

3 strings

8 ^{enr}Ge detectors 17.66 kg 1 ^{nat}Ge detectors 2.96 kg

Status of Phase I Detectors

September 2012

6.10 kg•yr (enrGe) and 3.17 kg•yr (natGe)

Since Jan. 2012 – events with energy between 2019 and 2059 are filtered

out ('blinded') from the analysis

C.A. Ur - EuNPC2012

September 2012

Data from Phase I Detectors

Background in GERDA Phase I

		nat Ge–dets (3.2 kg·y)		(.2 kg·y) $enr Ge-dets (6.1 kg·y)$		HdM
isotope	energy [keV]	tot/bck [cnt]	rate [cnt/(kg·y)]	tot/bck [cnt]	rate [cnt/(kg·y)]	rate [cnt/(kg·y)]
^{40}K	1460.8	85 / 15	$21.7^{+3.9}_{-3.1}$	125 / 42	$13.5^{+2.5}_{-2.2}$	181 ± 2
⁶⁰ Co	1173.2	43 / 38	< 5.8	182 / 152	$5.1^{+3.1}_{-3.1}$	55 ± 1
	1332.3	31 / 33	< 3.8	93 / 101	< 3.1	51 ± 1
^{137}Cs	661.6	46 / 62	< 3.2	335 / 348	< 5.9	282 ± 2
^{228}Ac	910.8	54 / 38	$5.0^{+3.0}_{-3.0}$	294 / 303	< 11.1	29.8 ± 1.6
	968.9	64 / 42	$6.7^{+3.8}_{-3.1}$	247 / 230	< 15.2	17.6 ± 1.1
^{208}Tl	583.1	56 / 51	< 6.5	333 / 327	< 7.6	36 ± 3
	2614.5	9 / 2	$2.1^{+1.2}_{-1.0}$	10 / 0	$1.5^{+0.7}_{-0.5}$	16.5 ± 0.5
214 Pb	352	740 / 630	$34.6^{+15.2}_{-12.4}$	1770 / 1688	$13.2^{+11.5}_{-7.9}$	138.7 ± 4.8
^{214}Bi	609.3	99 / 51	$14.8^{+4.9}_{-3.5}$	351 / 311	$6.2^{+4.7}_{-4.0}$	105 ± 1
	1120.3	71 / 44	$8.4^{+3.8}_{-3.4}$	194 / 186	< 6.1	26.9 ± 1.2
	1764.5	23 / 5	$5.5^{+2.0}_{-1.6}$	24 / 1	$3.6^{+0.9}_{-0.9}$	30.7 ± 0.7
	2204.2	5 / 2	$0.8^{+0.9}_{-0.7}$	6 / 3	$0.4^{+0.4}_{-0.4}$	8.1 ± 0.5

Important reduction as compared to the HdM experiment

Background Index of GERDA Phase I

$2\nu\beta\beta$ Decay of ⁷⁶Ge

Preliminary Half-Life of $2\nu\beta\beta$ Decay of ⁷⁶Ge

⁴²Ar Background

Consistent measurements in LArGe and GERDA setups yield 93.0 ± 6.4 µBq/kg

mini-shround around the detectors - E-field free environment

- around detectors
- avoid convection effects reduces the effect

September 2012

R&D for Phase II Detectors

BEGe type detectors were chosen for the Phase II of the GERDA experiment

>26 detectors (>20 kg enrGe) to be built

- June 5 ^{enr}BEGe deployed on the 1–string arm
 - → total 18.1 kg ^{enr}Ge
- > good energy resolution and noise characteristics
- excellent discrimination capability of between SSE and MSE based on PSD analysis

Discrimination based on A/E Parameter

C.A. Ur - EuNPC2012

September 2012

Background Rejection by LAr - R&D Phase II

- > importance of the LAr veto for the reduction of the γ -ray backg.
- >Simulations confirm possibility to
 - reach B.I. of 10⁻³ counts/(kg keV yr)

See talk by B.Lehnert

- **GERDA** read-out
- SiPMs connected to fibers
- >Low background PMTs

Summary

Phase I

- GERDA Phase I started in November 2011 with 14.63 kg of ^{enr}Ge
- Phase I background index of 10⁻² counts/(keV kg yr) is attainable when PSA applied
- Half-life of the $2\nu\beta\beta$ decay of ^{76}Ge measured with a remarkable signal-to-noise ratio
- Accurate determination of the ⁴²Ar contaminant concentration
- Minimized ⁴²Ar background through the use of polarized mini-shrouds
- 5 ^{enr}BEGe added to Phase I to increase ^{enr}Ge mass to 18.1 kg

Phase II

- Phase II ^{enr}BEGe detectors are under production (> 20 kg)
- Phase II R&D for LAr scintillation light read-out is going on
- Phase II background index 10⁻³ counts/(keV kg yr) with LAr veto

- Phase I expected to be completed by early 2013; start of Phase II