A Liquid Argon Scintillation Veto for the GERDA Experiment

Björn Lehnert

for the GERDA Collaboration

2nd European Nuclear Physics Conference Bucharest, 18/09/2012

Institut für Kern- und Teilchenphysik

• Outlook for Phase II

• Outlook for Phase II

Background Rejection in GERDA

0. Onubb signal 1. Muon vetoed 2. Anti coincidence vetoed 3. Pulse shape discriminated 4a. LAr vetoed from outside 4b. LAr veto from inside

• Goal: Optimize LAr veto for main backgrounds in Phase II

- Tl208 and Bi214 from outside (holding structure)
- Po210 and K42 on detector surface (point contact)
- Ga68/Ge68 inside crystals

Scintillation in Liquid Argon

- Light yield: $40.000 \gamma / \text{MeV}$
- Single reemission peak (λ =128nm)
 - Not directly detectable
 - Wavelength shifter needed (e.g. VM2000 + TPB)
- Scattering length 128nm: \approx 80cm
- Scattering length 450nm: > 1km
- Properties highly dependent on impurities: e.g. Xe, N₂

Gosjean, Phys. Rev. B 56 (1997)

R&D with LArGe: Experimental Verification (Th228 source)

R&D with LArGe: MC Verification (Th228 source)

- Material reflectivities (Ge, Cu, VM2000, ...)
- Absorption and emission spectra
- LAr attenuation length, light yield and triplet lifetime
- Good MC description for multiple sources after tuning
 EuNPC 2012, Bucharest
 Björn Lehnert

8

2 x h = 100 cm d = 25 cm0.5kg fibers $\approx 2m^2$ detector 60 SiPM

Fiber Design for GERDA

- Read out with KETEK 3mm x 3mm SiPM in die
- Fibers close to detectors for maximum light collection
- Bg compatible with PII goals even without self veto
 - Fibers: Th232: 58 muBq/kg
- Fiber attenuation length measured and modeled (up to 3.8m)

Optical coupling: 9 fibers per SiPM

Prototype under construction and tested in small scale EuNPC 2012, Bucharest

Fibers and coating R&D: Bare scintillating fiber vs WLS coated fiber

PMT Design for GERDA

Reflective foil (VM2000) coated with WLS (TPB)

R11065-10 MOD: (3-inch) QE 25% @ 420nm ultra-low bg-version: 2 mBq / PMT (Ra226 & Th228)

- Induced bg compatible with Phase II goals
- Technology proven in LArGe
- PMT long term tests ongoing

low bg voltage divider operational in LAr

10

3 connected copper shrouds h = 210cm, d=50cm

EuNPC 2012, Bucharest

Björn Lehnert

3rd Option:

- SiPM / APD close to crystals
- Direct detection of 128 nm photons
- Compatible with Mini Shroud

Design Comparison

PMT

Comparison based on:

- Veto efficiency for different bg sources
- Instrumentation induced background
- Hardware availability & stability
- MaGe (Geant4) based simulation of nuclear decays
 - If Ge event passes cuts, optical photons are propagated. Otherwise event is discarded
- Storage of PMT/Fiber hits; Use empirical acceptance model for Fibers
- MC Comparison extremely CPU consuming (600.000 CPUh for comparison)

Induced bg 10⁻³ [cts/kg/yr/keV]

Nuclide	PMT	Fiber
No veto	0.19	0.48
Self veto	0.0017	0.0025

Fiber

Design Comparison

Comparison of suppression factors including anti coincidence and LAr veto

and the second	Nuclide	Position	PMT	Fiber
	T1208	holders	261.8 ± 21.0	581.4 ± 11.8
-	Bi214	holders	39.3 ± 0.9	12.0 ± 0.1
/	Co60	crystal	24.9 ± 0.4	15.2 ± 0.1
	2.6 MeV	external	12.8 ± 0.2	20.8 ± 0.4
	K42	LAr	11.1 ± 1.8	24.7 ± 17.1
/	Bi214	LAr	N/A	32.5 ± 7.0
	Bi214	surface	37.5 ± 5.9	13.0 ± 0.3
	K42	surface	1.22 ± 0.01	1.16 ± 0.01

- Fiber design option prevails for Tl208
- PMT design option prevails for Bi214 and Co60
- Not sensitive to alpha and beta decays on detector surface
- Self induced bg agree with Phase II specs
 - Both design applicable without LAr drainage

Björn Lehnert

Outlook: Hybrid Design

- Collaboration decided to use the 500mm Lock design
- Idea: Integrate both PMT and Fiber design into a "Hybrid" design
- Two options for Fiber / PMT configuration
- Two options for germanium array configuration
- Hardware constraints favor a dense packing
- MC results are very preliminary
 - Suggest that the Hybrid is more efficient than either single design
 - Suppression factors do not differ significantly between the 4 options

top PMTs

shroud 1 : 600 mm

outer fibers :

(900 x 500) mm

inner fibers :

(copper + VM2000 + WLS)

(900 x 0.5*string distance)

bottom PMTs

(copper + VM2000 + WLS)

shroud 3 : 600 mm

PMT &

Fibers outside

13

Conclusions

- R&D on two LAr veto design options: PMT and Fiber
 - Hardware for both options are available
 - Prototype/test setup construction started
- Monte Carlo simulation set up and verified with LArGe data
- Hybrid design is currently considered and its performance is assessed
- LAr veto suppression factors promising: >200 for Tl208 and >20 for Bi214 with single designs

Thank you for your Attention

Acknowledgement: We kindly thank the ZIH @ TU Dresden for the supply and support of the CPU farms DEIMOS and ATLAS for the Monte Carlo campaign.

EuNPC 2012, Bucharest

Backup Slides

EuNPC 2012, Bucharest

LAr Veto

Source	PMT design	Fiber design
TI208 (holders)	71.6 ± 3.6	213 ± 4
Bi214 (hol)	22.1 ± 0.5	8.5 ± 0.1
Co60 (crystal)	11.0 ± 0.2	11.7 ± 0.1
Ext gamma	7.0 ± 0.1	13.5 ± 0.3
K42 (LAr)	10.2 ± 1.6	12.7 ± 9.4
Bi214 (LAr)	N/A	31.4 ± 6.9
Bi214 (surface)	13.2 ± 2.3	9.2 ± 0.2
K42 (surface)	1.102 ± 0.01	1.123 ± 0.01

EuNPC 2012, Bucharest

Anti Coincidence

Source	PMT design	Fiber design
TI208 (holders)	3.70 ± 0.03	2.725 ± 0.006
Bi214 (hol)	1.77 ± 0.01	1.403 ± 0.007
Co60 (crystal)	2.27 ± 0.02	1.297± 0.004
Ext gamma	1.83 ± 0.03	1.54 ± 0.01
K42 (LAr)	1.1 ± 0.1	1.95 ± 0.54
Bi214 (LAr)	N/A	1.04 ± 0.06
Bi214 (surface)	2.8 ± 0.2	1.40 ± 0.02
K42 (surface)	1.103 ± 0.004	1.03 ± 0.01

LAr and AC

Source	PMT design	Fiber design
TI208 (holders)	261.8± 21.0	581.4 ± 11.8
Bi214 (hol)	39.3 ± 0.9	12.0 ± 0.1
Co60 (crystal)	24.9 ± 0.4	15.2± 0.1
Ext gamma	12.8± 0.2	20.8± 0.4
K42 (LAr)	11.1 ± 1.8	24.7 ± 17.1
Bi214 (LAr)	N/A	32.5 ± 7.0
Bi214 (surface)	37.5± 5.9	13.0 ± 0.3
K42 (surface)	1.22± 0.01	1.16 ± 0.01

EuNPC 2012, Bucharest