

MC Benchmarks for LAr Instrumentation in GERDA

Björn Lehnert

Institut für Kern- und Teilchenphysik TU-Dresden

DPG, Mainz, 22/03/2012

GERDA - GERmanium Detector Array

Novel idea: Operate germanium detectors naked in liquid argon

- Serving as cooling
- Serving as shielding
- Possible to implement as active veto

LAr as an active veto Plans for GERDA

- Instrument the LAr to detect scintillation light.
 - Veto backgrounds from coincidence between Ge and LAr events.
 - Principle already demonstrated in test facility (LArGe).
 - Aim implementation for GERDA phase II.
- ► Two major instrumentation designs (J. Janicsko, HK 18.2).
 - Optical fiber design.
 - PMT design.

Goals for the MC:

- Estimate background suppression (veto efficiency) of the design.
- Optimize the design to maximize background suppression.

LAr optical properties

- ► High light yield: ~ 4 × 10⁴ photons/MeV.
- Single re-emission peak ($\lambda = 128$ nm).
 - Not directly detectable.
 - Use wavelength shifter (eg. VM2000).
- Short scattering length in emission range ($\sigma_{128nm} \approx 80$ cm).
- Properties strongly affected by impurities (eg.: Xe, N₂).
- ► Transparent in the visible range (σ_{550nm} > 1km).

Gosjean, Phys. Rev. B 56(1997)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二圖 - 釣�?

Types of studied backgrounds

- Internal backgrounds:
 - ▶ Mostly cosmic activations (⁶⁰Co).
- Backgrounds in LAr:
 - Backgrounds distributed in LAr (^{214}Bi , ^{42}K).
 - Backgrounds on the surface of crystals (mostly α : ²¹⁰Po).
- Bulk contamination of support structures:
 - ▶ ²⁰⁸Tl (²³²Th chain), ²¹⁴Bi (²²⁶Ra).
- ▶ Only background events that deposit $Q_{\beta\beta} \pm 50 \text{keV}$ in Ge are relevant.
- Different veto energy thresholds are tested.

Validation of the MC with LArGe

- Use these measurements as a base to validate the MC.
 - No measurements with GERDA and LAr veto.
 - Simpler geometry.
 - Smaller scale (LAr volume).
- Tune the MC (eg.: optical properties of Argon).
- Several measurements with calibration sources performed in LArGe.
 - Using both internal and external sources.
 - A single BEGe as the Germanium detector.
- Estimated energy threshold veto is ~ 100 keV.

Validation of the MC Results with LArGe

Energy spectrum in Germanium

²²⁸Th:

- Only ²⁰⁸Tl was simulated (major contributor).
- Some results:

Rate of backgrounds in $Q_{\beta\beta}$: 0.078 % w.r.t. simulated events. S_{100keV} : 1507 S_{20keV} : 2748 $S_{measured}$: 1180 ± 250

²²⁶Ra:

Only ²¹⁴Bi was simulated.

Results:

Rate of backgrounds in $Q_{\beta\beta}$: 7×10^{-3} % w.r.t. simulated events. $S_{100 \, keV}$: 5.6 $S_{20 \, keV}$: 8.1 $S_{measured}$: 4.6 \pm 0.2

Energy spectrum in Germanium for 214Bi source

Validation of the MC Results with LArGe

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

32

Energy spectrum in Germanium

Summary of LArGe MC tests:

- MC consistent with the experimental measurements.
 - The MC is not yet fully tuned.
- ▶ Discrepancy in ⁶⁰Co simulation likely due to imprecise information:
 - Position of the source.
 - Design of the source.
 - Geometrical effects (shadows).

MC Status for GERDA Phase-I

- Principle similar to LArGe.
- Considerably more complex geometry.
 - Multiple Ge detectors instead of a single one.
 - Additional detector components (holders, cables).
- Simulations of major backgrounds estimated through the deposited energy:
 - These tests do not yet allow to properly compare designs.
 - It serves as an indication of the best possible scenario for the veto.

MC Status for GERDA Phase-I Bulk contamination (²⁰⁸Tl on crystal holders)

 S_{100keV} : 254 S_{10keV} : 354

• High efficiency due to multiple γ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

MC Status for GERDA Phase-I Bulk contamination (²¹⁴Bi on crystal holders)

 S_{100keV} : 3.5 S_{10keV} : 4.4

• Single γ lowers veto efficiency.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

MC Status for GERDA Phase-I Bulk contamination (42 K in LAr)

Veto Efficiencies K42_hom

 S_{100keV} : 6.0 S_{10keV} : 54.8

- Major background visible in GERDA.
- Distribution known to be not homogeneous.

(□) (圖) (E) (E) [E]

MC Status for GERDA Phase-I Bulk contamination (42 K on crystal surface)

Veto Efficiencies K42_surf

 S_{100keV} : 1.3 S_{10keV} : 1.4

- Major background visible in GERDA.
- Distribution known to be not homogeneous.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Summary of results so far

lsotope	Location	Suppression factor	
		100 keV	10 keV
²⁸⁰ Tl	Holders	254	354
$^{214}\mathrm{Bi}$	Holders	3.5	4.4
	Crystal surface	13.8	20.1
$^{42}\mathrm{K}$	Homogeneous in LAr	6.0	54.8
	Surface of Crystal	1.3	1.4
⁶⁰ Co	Homogeneously in Crystals	57	68
²¹⁰ Po	Surface of Crystal	2.1	2.2

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

► Values serve as an optimistic indicator of efficiency.

Conclusion

- Currently MC for LAr veto designs is an ongoing project.
- MC being tuned using LArGe results as base.
 - Initial results are already promising.
- LAr veto instrumentation able to reduce background index by 2 orders of magnitude (on specific backgrounds).
 - Limited efficiency on most visible GERDA background (^{42}K) .
 - Different approaches being followed in this case.
 - ► Will become a key component to achieve the background index aimed for phase II (10⁻³ counts/(kg·yr·keV)).

- Present background index : $\sim 10^{-2}$ counts/(kg·yr·keV).
- ► Full simulation with photon tracking under preparation.