Measuring optical properties of LAr in GERDA

Björn Scholz

ΙΚΤΡ

22 March 2012

Outline

1. Motivation

- 2. Simulations
- 2.1 Choosing the right setup
- 2.2 Measuring attenuation lengths

3. Prospects

Improving accuracy of MC benchmarks

- Further background reduction via LAr veto
- Geometry of LAr veto not fixed yet (HK18.2)
- MC studies to find most promising setup
- Attenuation length (λ_{Att}) and light yield (LY) are input parameters for MC simulations (Geant4/MaGe)

TECHNISCHE

Precise measurements of λ_{Att} and LY would lead to more accurate benchmarks

Impurities influence optical properties

<u>Pure LAr</u>:

- Emission peak at $\lambda = 128.6 \,\mathrm{nm^{(1)}}$
- Attenuation length $\lambda_{\rm Att} = 66 \pm 3 \, {\rm cm}^{(2)}$
- Light yield
 - Alphas: $\sim 37.000 \, \gamma s / MeV^{(3)}$
 - \circ Betas: \sim 41.000 $^{\gamma s}$ /MeV $^{(3)}$

Contaminated LAr:

- λ_{Att} depends on impurities: e.g. N₂, O₂,Xe
- Light yield supressed due to non-radiative de-excitation

 $^{(1)}$ T. Heindl et al (2010) $^{(2)}$ N. Ishida et al (1997) $^{(3)}$ T. Doke et al (2002)

Radioactive source as only light source

Problems:

- In-situ measurements necessary
- No commercial light source satisfies our needs:
 - 1. Emission at 128 nm
 - 2. Deployable in GERDA:
 - Operates at 87 K
 - Small enough to pass the glove box

Solution:

• Use scintillation light produced by radioactive source

Source Candidates

Alpha Sources:

lsotope	$T_{1/2}$	BR [%]	Q-Value [keV]
¹⁴⁸ Gd	74.6 y	100	3271.21
²¹⁰ Po	138.4 d	pprox 100	5304.38
		0.00122	4516.58

Beta Source:

_

lsotope	$T_{1/2}$	BR [%]	Q-Value [keV]
⁹⁰ Sr	28.79 y	100	546.0

http://ie.lbl.gov/education/isotopes.htm

Gadolinium source looks promising

Energy spectrum

Position of E_{Dep}

• Flat energy spectrum

• Localized energy deposition

Polonium source looks promising

Energy spectrum

Position of E_{Dep}

• Flat energy spectrum

• Localized energy deposition

Strontium source doesn't look feasible

Energy spectrum

Position of E_{Dep}

Can λ_{Att} really be measured?

- Run simulations with known λ_{Att} and LY
- Simulated setup as shown
 - Cylindrical shield
 - Movable source
 - PMT at the bottom
 - ³⁹Ar background
- Check whether correct λ_{Att} can be retrieved from data

Excellent results without background

10 / 12

Good results with ³⁹Ar background

11 / 12

Simulations indicate feasible setup

- Include systematics, mainly positioning
- Check commercial Polonium sources for contaminations
 ²¹⁰Pb content would rule a ²¹⁰Po source out
- Setup feasible to yield any information regarding the LY? Known problems: Quantum efficiency of WLS, PMT, etc.
- Build small test stand