A liquid argon scintillation veto for GERDA and LArGe

Janicskó-Csáthy József for the GERDA collaboration

Date

DPG Mainz 2012, HK 18.2

2β decay

2β decay with 0 neutrinos

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{v}_{e}$$

allowed and observed

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

violates lepton number conservation

$$\begin{pmatrix} T_{1/2}^{0\nu} \end{pmatrix}^{-1} = F^{0\nu} \cdot \left| \mathcal{M}^{0\nu} \right|^2 \cdot m_{\beta\beta}^2$$

$$\begin{pmatrix} m_{\beta\beta} \end{pmatrix} = \left| \Sigma_i U_{ei}^2 m_{\nu i} \right|$$

 $\mathcal{M}^{0\nu}$ - nuclear matrix element $F^{0\nu}$ - phase space integral depends on the Q value $\langle m_{\beta\beta} \rangle$ - effective neutrino mass

GERDA

See talks: HK 40. 2-6

M - mass of the isotope t - time

disfavoured by $0v2\beta$ Claim 10^{-1} $\Delta m_{23}^2 < 0$ mee | in eV disfavoured by cosmology 10^{-2} $\Delta m_{23}^2 > 0$ 10^{-3} 99% CL (1 dof) 10^{-4} 10^{-2} 10^{-3} 10^{-1} 10^{-4} lightest neutrino mass in eV

F.Feruglio et al. Nucl.Phys.B 637 (2002)

For a better limit we need:

- more mass
- lower background
- better energy resolution
- measure longer ??

A. Caldwell et al. Phys.Rev. D 74 (2006) 092003

GERDA

See talks: HK 40. 2-6

LAr veto - The concept

Th232

K42

In the Region of Interest around 2040 keV

- Nearby ²⁰⁸Tl events can be easily vetoed with very high efficiency
- γ (Ο_β)

HPGe

LAr

- ∗ ²¹⁴Bi is less effective
- * Does not work for surface α and β events
 - Veto efficiency in GERDA will strongly depend on the origin of the background

LArGe test facility

LArGe test facility

LArGe, Suppression of internal ²²⁸Th

GERDA

LArGe, Suppression of internal ²²⁸Th

GERD

LArGe, Suppression of internal ²²⁸Th

GERD

LArGe, Suppression of internal ²²⁶Ra

²²⁶Ra source distance ~7 cm DAQ via FADC

GERDA

LArGe, Background spectrum

detector: GTF44 (non-enriched Ge)

exposure: 116 kg·d
shielding unfinished

GERD

 background index at Q_{ββ} ± 150 keV:
 0.12 - 4.6 • 10⁻² cts / (keV·kg·y)

LArGe - Summary of suppression factors

source	position	suppression factor			
		LAr veto	PSD	total	
⁶⁰ Co	int	27 ± 1.7	76 ± 8.7	3900 ± 1300	
²²⁶ Ra	ext	3.2 ± 0.2	4.4 ± 0.4	18 ± 3	
	int	4.6 ± 0.2	4.1 ± 0.2	45 ± 5	
²²⁸ Th	ext	25 ± 1.2	2.8 ± 0.1	129 ± 15	
	int	1180 ± 250	2.4 ± 0.1	5200 ± 1300	

Acceptance for $\beta\beta$ -events:

LAr veto >97% PSD 90%

Combined suppression:

$$SF_{total} \sim 1.8 \times (SF_{LAr} \times SF_{PSD})$$

Ref. M. Heisel, PhD thesis, 2011

Options for GERDA

PMT option - hardware

voltage dividers

 \rightarrow low-bg CuFlon-based

VM2000 reflector foil + wavelength shifter (TPB)

h

h = 210 cm

 $\emptyset = 50 \text{ cm}$

SiPM + WLS fiber design

- Idea was tested at small scale
- SiPMs work at cryogenic temperatures
- TPB + WLS fiber concept works

Ref: NIM A 654 (2011), pp. 225-232

- * Ketek GmbH Munich based company. Willing to sell SiPMs in 'die'.
- * Purchased 100 pieces. Already delivered. (~60 needed)

SiPM holder

- SiPM delivered in 'die', low background packaging is developed
- 9 fiber coupled to 1 SiPM
- units of 27 fibers = 38 mm x 2, full coverage = 10 strips, manageable quantity

Induced background

ICPMS results: WLS fiber measured at LNGS

Element	Conc.	Activity Bq/kg	Background cts/(keV kg Year)
K	15 ppb	4.6x10-4	_
Th	14.3 ppt	5.8x10 ⁻⁵	8x10-4
U	3.4 ppt	4.2 x10 ⁻⁵	7.9x10 ⁻⁵

- * The whole setup consists of about 0.5 kg fiber (2 m² photon detector)
- Relevant activity: O(~10 μBq)
- * Compatible with the background goal of GERDA Phase II

Expected Suppression Factors

- * Fibers are sensitive also on the outer side $(E_{inside} + \Omega^* E_{outside}) > E_{eff.thr.}$
- * Nearby source: Simulated in the copper holder of the Ge detectors
- * External source single gamma (2.6 MeV) hitting the array
- At least 10x suppression expected

Threshold keV	Internal T1208	external T1208	Tl208 in fiber	Bi214 in fiber			
10	40.7	61.6	4863	12.0			
100	13.0	11.2	503	4.1			
130	10.0	7.6	286	2.9			
suppression factors for different thresholds, only energy deposited in LAr, no delayed coincidence							

Summary - Outlook

- Significant reduction of the background was demonstrated
- * LAr instrumentation will be implemented in GERDA
- Two competing concepts are being developed
- * To be deployed in Phase II