

Part 2:

A liquid argon scintillation veto for GERDA and LArGe

<u>Part 1:</u> Veto concept & LArGe measurements

light instrumentation design options in GERDA

Mark Heisel for the GERDA Collaboration

DPG Göttingen, 2012

Germanium Detector Array

01/03/2012

DPG Göttingen T 116.1

Germanium **D**etector **A**rray

The GERDA background challenge

Background index (BI)

[cts / (keV·kg·y)]

- ▶ present (Phase I): 1.7 x 10⁻²
- ► Phase II: 1.0 x 10⁻³

Active background suppression:

- water cherenkov muon veto
- detector anti-coincidence
- pulse shape discrimination (PSD)
- LAr veto: detect argon scintillation light from background events that deposit energy in the LAr

01/03/2012

DPG Göttingen T 116.1

Ar scintillation properties:

- ► 40,000 photons / MeV
- ▶ λ = 128 nm (XUV)
- ► singlet- & triplet component

Average scintillation pulse:

DPG Göttingen T 116.1

Examples for events in $Q_{_{\beta\beta}}$:

$\beta\beta$ -event \rightarrow is not vetoed

Examples for events in $Q_{\beta\beta}$:

 $\beta\beta$ -event \rightarrow is not vetoed

surface beta (⁴²K, ²¹⁴Bi) → often not vetoed

7

Examples for events in $Q_{_{BB}}$:

external (²⁰⁸Tl, ²¹⁴Bi) → can be vetoed

 $\beta\beta$ -event \rightarrow is not vetoed

surface beta (⁴²K, ²¹⁴Bi) → often not vetoed

LArGe test facility

Location: lock system Germanium detector lab LNGS @ 3800 m w.e. 9x 8" PMTs reflector foil & wavelength shifter **PMT** bare Ge-detector ~450 nm VM2000 + WLS•Ar scintillation 128 nm cryostat with LAr volume 1000 l Shield (unfinished) Cu 15 cm, Pb 10 cm, Steel 23 cm, PE 20 cm

DPG Göttingen T 116.1

LArGe test facility

01/03/2012

11

DPG Göttingen T 116.1

LArGe – suppression of internal ²²⁸Th

 ²²⁸Th source distance ~7 cm
 DAQ via FADC

Suppression factor at $Q_{\beta\beta} \pm 35$ keV: LAr veto ~1200

LArGe – suppression of internal ²²⁸Th

10^6

 ²²⁸Th source distance ~7 cm
 DAQ via FADC

Suppression factors
at $Q_{\beta\beta} \pm 35$ keV:LAr veto~1200PSD~2.4veto+PSD~5200

01/03/2012

LArGe – suppression of internal ²²⁸Th

- ²²⁸Th source distance ~7 cm
- DAQ via FADC

Left:

DEP

Right:

2615 keV

LArGe – suppression of internal ²²⁶Ra

 ²²⁶Ra source distance ~7 cm
 DAQ via FADC

Suppression factors
at $Q_{\beta\beta} \pm 35$ keV:LAr veto~4.6PSD~4.1veto+PSD~45

source	position	suppression factor			
		LAr veto	PSD	total	
⁶⁰ Co	int	27 ± 1.7	76 ± 8.7	3900 ± 1300	
²²⁶ Ra	ext	3.2 ± 0.2	4.4 ± 0.4	18 ± 3	
	int	4.6 ± 0.2	4.1 ± 0.2	45 ± 5	
²²⁸ Th	ext	25 ± 1.2	2.8 ± 0.1	129 ± 15	
	int	1180 ± 250	2.4 ± 0.1	5200 ± 1300	

Acceptance for $\beta\beta$ -events:			Con
LAr veto	>97%		SE
PSD	90%		to

Combined suppression:

$$SF_{total} \sim 1.8 \times (SF_{LAr} \times SF_{PSD})$$

LArGe – background spectrum

10^2

counts [#]

detector: GTF44 (not-enriched Ge)

- exposure: 116 kg·d
- shielding unfinished
- background index at $Q_{BB} \pm 150$ keV: $0.12 - 4.6 \cdot 10^{-2}$ cts / (keV·kg·y)

GERDA

<u>Part 2:</u>

light instrumentation design options for GERDA

PMT option vs. scintillation fibres

PMT option: hardware

h = 210 cm Ø = 50 cm

talk by A. Wegmann T113.7

low-background PMTs available:

- ► QE ~25%
- LAr teststand at MPIK

	R5912-02 MOD (8-inch)	R11065-10 MOD (3-inch)
uctivity ²²⁸ Th:	165 mBq/PMT	1.0 mBq/PMT
²³⁸ U:	374 mBq/PMT	<0.94 mBq/PMT

voltage dividers

 \rightarrow low-bg CuFlon-based

VM2000 reflector foil + wavelength shifter (TPB)

Fibre design – hardware (1)

2 fibre types investigated

		T			
	BCF-10 blue scintilla no claddir	BCF-10 blue scintillator no cladding		BCF-91A green + WLS multiclad	
radiopurity					
γ-screening	: ²²⁸ Th, ²²⁶ Ra	<16 mBq/kg		(BCF-91A)	
CPMS: Th, U <0.0		<0.06	mBq/kg (both types))

- ► coupling: 9 fibres on 1 SiPM
- read-out both ends
- total:
 10 strips á 27 fibres

Fibre design – hardware (2)

KETEK SiPMs

- sensitive surface 3x3 mm²
- 100 pieces available (~60 needed)
- Summing ampl. in developm.:
 30 SiPM → 1 channel

low-bg holder

Section of Low Cost Package

Size 3.9 mm x 4.4 mm x 2.0 mm (Active chip area: 3 mm x 3 mm)

01/03/2012

22

Suppression factors & BI

Monte Carlo for cylindrical active LAr volume $\phi = 600 \text{ mm}$

isotope	location	suppression factor		
		100 keV	10 keV	
²⁰⁸ TI	detector holders	254	354	
214 D i	detector holders	3.5	4.4	
DI	detector surface	13.8	20.1	
42	homogeneously in LAr	6.0	54.8	
n	detector surface	1.3	1.4	
⁶⁰ Co	homogeneously in Ge	57	68	
²¹⁰ Po	detector surface	2.1	2.2	
		4 - 11 - 1 N.I.	B T 100 E	

 \rightarrow talk by N. Barros T109.5

Instrumentation induced background index (preliminary)

	PMT option		fibre option (w\o self-veto)		
	no veto	self-veto	blue	green	10 ⁻³ cts/
	1.2	0.067	<0.32	0.88	(keV·kg·y)
01/03/2012	DPG Göttingen T 116.1				23

a LAr veto is a powerful tool for background rejection! (as demonstrated in LArGe)

a LAr veto is a powerful tool for background rejection! (as demonstrated in LArGe) we are developing several design options for a LAr light instrumentation in GERDA!

a LAr veto is a powerful tool for background rejection! (as demonstrated in LArGe) we are developing several design options for a LAr light instrumentation in GERDA!

ightarrow LAr bg-suppression may play a major role in GERDA Phase II

DPG Göttingen T 116.1