

Surface event pulse shape studies of Phase I semi-coaxial Ge-detector

Andrea Kirsch MPI für Kernphysik

DPG Frühjahrstagung @ Göttingen — February 27, 2012

Outline

- Experimental Setup
- 2 Energy Spectrum
- 3 Monte Carlo
- O Pulse Shapes
- 3 A/E Properties

Pulse Shapes

A/E properties

Motivation

Motivation

semi-coaxial Ge-detector

under investigation $^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2\text{e} + 0\nu$ background (1) γ events compton scattering photoelectric absorption pair production **2** α/β surface events

Strontium source

equation of physical decay

$${}^{90}_{38}\mathrm{Sr} \rightarrow {}^{90}_{39}\mathrm{Y} + \mathrm{e} + \overline{\nu}_{\mathrm{e}} \\ {}^{90}_{40}\mathrm{Zr} + \mathrm{e} + \overline{\nu}_{\mathrm{e}}$$

endpoint energies

- $E_{\mathrm{Sr} \to \mathrm{Y}} = 0.546 \ MeV$ $E_{\mathrm{Y} \to \mathrm{Zr}} = 2.273 \ MeV$
- almost perfectly pure β source with activity of $7.0\,\pm\,1.4~k{\rm Bq}$
- $\bullet\,$... interesting for studying signals related to surface events, e.g. $\alpha{'}{\rm s}$
- $\bullet\,$ totally encapsulated (welded stainless steel) with window of $50\;\mu{\rm m}$
- ... allows localization for position sensitive data-taking

Experimental procedure

⁹⁰Sr source (red circle), bare detector and preamplifier were submerged in LAr during data-taking

experiment was performed in GDL - a GERDA test facility @ LNGS

Surface event pulse shape studies

Measured positions

Schematic drawing of the positions locall exposed to the $^{90}\mathrm{Sr}$ source, view from bottom.

• data for 5 different positions

- **1** outer edge of detector
- ❷ edge of detector − groove
- ❸ outer edge of groove
- In the groove
- 6 inner contact of detector
 - additional calibration source: ⁶⁰Co for energy calibration of the strontium spectrum (removable)
 - 2×data (event & event-calib)

Measured positions

Schematic drawing of the positions locall exposed to the $^{90}\mathrm{Sr}$ source, view from bottom.

• data for 5 different positions

- outer edge of detector
- edge of detector groove
- Outer edge of groove
- In the groove
- 6 inner contact of detector
 - additional calibration source: ⁶⁰Co for energy calibration of the strontium spectrum (removable)
 - 2×data (event & event-calib)

Energy spectrum of ⁹⁰Sr

 very different ⁹⁰Sr spectra shapes for positions **028** and positions **46**!

Position	duration	number	count rate
	[sec]	of events	$[s^{-1}]$
1	1273.57	101998	80.1
2	1532.56	151054	98.6
3	1215.05	186477	153.5
4	87.31	94125	1678.0
5	193.68	148785	1441.8

- higher count rates
- proportionately more events in higher energy regions

Energy spectrum of ⁹⁰Sr

• very different ⁹⁰Sr spectra shapes for positions **0**28 and positions **46**!

Position	duration	number	count rate
	[sec]	of events	$[s^{-1}]$
1	1273.57	101998	80.1
2	1532.56	151054	98.6
3	1215.05	186477	153.5
4	87.31	94125	1678.0
5	193.68	148785	1441.8

- higher count rates
- proportionately more events in higher energy regions

What was simulated?

Technical drawing with dimensions of the 'Prototype' detector, by CANBERRA

- implemented geometry of the 'Prototype' detector in <u>MaGe</u> (MC software based on geant4)
- decay chain ${}^{90}\text{Sr} \rightarrow {}^{90}\text{Y} \rightarrow {}^{90}\text{Zr}$
- scan of several parameters:

radial (x-)	direction	:	
-1.3375 cm ④			-2.5 cm ❷
vertical (z-)direction:			
$0.5 \mathrm{mm}$	$1.0~{\rm mm}$		$1.5{ m mm}$
thickness of dead layer:			
0.3 µm 4	0.8 mm	1.0 mm	1.2 mm ❷

position **2**

 $0.3 \ \mu m$:

exp. data

z = 0.5 mm

z = 1.0 mm

z = 1.5 mm

Energy (MeV

8 / 14

position ④ Measured and simulated spectrum

without dead layer \rightarrow thickness of

Spectral shapes

for a fixed dead laver of 1.0 mm thickness:

for a fixed vertical source distance of 1.0 mm.

- MC to determine dead layer thickness and distance of source to detector surface 0
- very nice agreement between simulated and measured activity 0
 - $(A = 7.0 \pm 1.4 \text{ kBq}, \text{ datasheet by ECKERT & ZIEGLER NUCLITEC GMBH})$

Energy deposition in active volume

Picture displays simulated interaction positions for 20

- different distributions of energy deposition for 20
- not only surface events for 128 @ n+ contact

thickness of	deposited energy [%]	
active layer [mm]	position 2	position 4
≤ 1	38.4	97.0
≤ 2	47.5	97.8
≤ 5	64.5	98.8
≤ 10	78.5	99.0
≤ 20	90.2	99.6
≤ 50	98.9	99.96
whole active vol.	100	100

Table shows fraction of simulated dep. energy in regions of different layer thickness, starting from the surface.

position 🕑

1.1% of total dep. energy within the active volume

position **4**

31.1% of total dep. energy within the active volume

Similar pulse shapes for different energy bins observed!

Average charge signal & risetime

Similar pulse shapes for different energy bins observed!

Current signals

average

Current signal (can be obtained by differentiation of charge pulse):

 simulation of pulse shapes
 → in process

"typical" signal / no average

Selection of exemplary current Observed current shape of positions **0**(smoothed): **2**

Surface event pulse shape studies

A/E for different positions

Definition: A/E

= maximum current amplitude ÷ energy

• allows discrimination of signals originated from **128** and **35**

Surface event pulse shape studies

A/E for different positions and 60 Co

Definition: A/E

= maximum current amplitude ÷ energy

Distribution of Amplitude-to-Energy-Ratio:

- allows discrimination of signals originated from **128** and **35**
- events from ⁶⁰Co peaks exhibit same A/E like first 3 positions
- separation sufficient for cutting procedure?

e.g.:

calibration measurement with additional $^{90}\mathrm{Sr}$ source from position 4

Surface event pulse shape studies

Calibration spectrum with A/E-Cut

= events originated from 90 Sr and 60 Co source

- applied veto cut: ${\rm A/E} < 0.65$
- overview of cutting properties:

energy	number of events		survival
[keV]	original	vetoed	propability [%]
all	325408	83613	25.6
1173 ± 2.5	2092	2001	95.6
1332 ± 2.5	1701	1637	96.2

suppression of β 's in calibration spectrum from position 4 works!

Outlook & Conclusion

- possible to distinguish/cut surface signals coming from the groove
 and near the inner contact 6
- @ n₊ surface: several different pulse shapes, similar to 60 Co γ lines
- @ p+ surface: no pulse shape variations observed
- drawback : no exp. measurements for borehole

[α background characterization for the GERDA experiment — by N. Becerici-Schmidt, T109.3]

To do / work in process:

- MC simulations of pulse shapes (using detector dimensions, applied depletion voltage, impurity concentration, etc.)
- attempt to understand / reproduce measured pulse shapes)
- expand MC efforts to detector dimensions of GERDA Phase I for comparison with GERDA data