Study of pulse shape discrimination for beta events on the $\ensuremath{n^+}$ contact with BEGe detectors.

Andrea Lazzaro, Dušan Budjáš, Matteo Agostini, Stefan Schönert

DPG Göttingen, t113.2; 27th February, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Introduction 42 K GERDA background Slow-Pulses on n^+ contact

The A/E method.

Measurements and results

 ^{90}Sr measurements ^{106}Ru measurements Summary.

Simulated ⁴²K background suppression

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion

Potential background problem for GERDA phase II.

Simulation of a BEGe in liquid Ar with ⁴²K on the detector surface.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Potential background problem for GERDA phase II.

Simulation of a BEGe in liquid Ar with ⁴²K on the detector surface.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Potential background problem for GERDA phase II.

(日)、

э

gamma-like \equiv event releasing energy only in the bulk. It means no beta passing trough the dead layer.

Bulk and surface events

Example of typical single site bulk event.

The signals from the n^+ contact have longer rise time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The A/E method^{*}.

 $A \equiv maximum$ value of the current.

* see: JINST, 4 2009, P10007

Sources and detectors

Detector	Diameter [mm]	Thickness [mm]	Mass [kg]	DL [mm]
DD	74	32	0.700	0.45
CC	74.5	33	0.760	0.70
LD	71.5	50.5	1.018	0.60
BBS	75.1	30.7	0.734	0.50

Strontium pure beta source:

CC detector:

0.70 mm dead layer with full aluminium cryostat end-cap.

DD detector:

0.45 mm dead layer with full aluminium cryostat end-cap.

LD detector:

0.60 mm dead layer with carbon epoxy thin entrance window.

- Ruthenium beta and gamma source:
 - BBS detector:

0.5 mm dead layer with full aluminium cryostat end-cap.

$^{90}{\rm Sr}$ measurements with CC&DD detectors

⁹⁰Sr source:

- Lower end-point,
- pure beta emitter,
- bremsstrahlung from Al end cap.

Simpler analysis, less systematics. Tests in different set-ups.

DD and CC Bias Voltage and Dead Layer dependence.

CC: 3.5,4.0,5.0 kV DD: 4.0,4.5,5.0 kV

Dead Layer CC:0.70 mm DD:0.45 mm

90Sr - detector dependance

⁹⁰Sr measurements with low bremsstrahlung.

Measured with prototype low depleted *BEGe*. Thin carbon epoxy entrance window.

Less bremsstrahlung.

Higher end-point.

 ^{90}Sr rejection with $\textit{LD_BE}$

ł

Acceptance

^{106}Ru measurements at $Q_{\beta\beta}$ energy.

¹⁰⁶Ru source:

- High end-point,
- Several gamma lines,
- Compton continuum.

・ロト ・四ト ・ヨト ・ヨト

^{106}Ru measurements at $Q_{\beta\beta}$ energy.

¹⁰⁶Ru source:

- High end-point,
- Several gamma lines,
- Compton continuum.

Copper layer to stop betas and to measure the gamma component.

(日)、

¹⁰⁶Ru rejection with BBS BEGe.

BBS detector.

Shield measurement for γ component subtraction. Same residual spectrum with and without shield.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

¹⁰⁶Ru rejection with BBS BEGe.

BBS detector.

Shield measurement for γ component subtraction. Same residual spectrum with and without shield.

Stable acceptance above 1 MeV

ъ

Summary

	DL [mm]	E[MeV]	Acceptance	Comments
DD Sr	0.45	0.8 - 1.2	$6.08 \pm 0.07 10^{-3}$	Al end cap bremsstrahlung
CC Sr	0.70	0.8 - 1.2	$12.7 \pm 0.1 \ 10^{-3}$	Al end cap and 0.7 mm DL
LD Sr	0.60	0.8 - 1.6	$3.5 \pm 0.2 \ 10^{-3}$	non standard BEGe
BBS Ru	0.5	1.0 - 2.5	$8.8\ \pm 0.7\ 10^{-3}$	direct γ background

→ □ > → □ > → □ > → □ > → □ = →

⁴²K in LAr simulation

rate [#counts/keV]

Estimation of background rejection, combining Slow pulse and MSE discrimination.

Monte Carlo - K42 on detector surface in LAr

⁴²K in LAr simulation

Residual background after 0.01 cut of beta-like and 0.2 cut of gamma-like events.

Monte Carlo - K42 on detector surface in LAr

Potential ⁴²K BI after PSD in phase II < 0.00016 counts/(keV kg y) \Rightarrow

Conclusion

DONE:

- Characterization of BEGe detectors response to interactions in the n^+ contact.
- Study of external beta backgrounds suppression with A/E PSD method: evaluated suppression factor > 100 for all the detectors tested in different set-ups.
- ▶ Potential reduction of ⁴²K background for GERDA phase II within specifications.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

ON GOING:

Test with bare BEGe in liquid argon spiked in ⁴²Ar (LArGe).

TO COME:

▶ Test with GERDA phase II electronics