Characterization of BEGe detectors for GERDA

K. von Sturm for the Gerda collaboration

27th February 2012

bmb+f - Färderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

GERD

Germanium Detector Array (GERDA)

ø

Why do we use Germanium

- ⁷⁶Ge decays via $2\nu\beta\beta$ $\rightarrow 0\nu\beta\beta$ possible if it exists.
- High radio purity.
- Energy resolution FWHM 1.6 keV@1.3 MeV.
- Source and detector at the same time.
- Commercially used \rightarrow Production well approved (Canberra).

Broad Energy Germanium Detector (BEGe)

- P-type Point Contact (PPC) germanium detector
- very small ($\varnothing 1 2mm$), point-like electrode contact
- PSA: Decoding of multi site events from the waveforms
- Determination of surface events. \rightarrow Crucial for BG Reduction.
- Enrichment of Ge in ⁷⁶Ge.
- Phase II: BEGe detectors.
- Depleted BEGe detectors from the remaining material for testing.

Stability measurements - centroid

Stability of line centroid: ²⁴¹Am 59 keV, ⁶⁰Co 1333 keV

Surface scan

• In agreement with the technical drawing.

eberhard karls NIVERSITA TUBINGEN

Dead Layer determination - Monte Carlo (MC)

- MC: 60 keV, 99 keV, 103 keV
- Calculate the ratio:

 $\frac{\text{Area(60 keV)}}{\text{Area(99 keV)} + \text{Area(103 keV)}}$

- MC: Ion decay
- Calculate the ratio:

 $\frac{\text{Area}(80 \text{ keV}) + \text{Area}(81 \text{ keV})}{\text{Area}(356 \text{ keV})_{\text{EMEMARY KARS}}}$

Dead Layer determination

- MC with different DL thicknesses
- Comparison with measurement
- $^{241}Am: DL \approx 0.4 mm$

Dead Layer determination

- $\bullet~^{133}\text{Ba:}~\text{DL}\approx0.36\,\text{mm}$
- Large error due to MC
- Both in agreement with 0.35 mm stated my Canberra.

Dead Layer determination - postprocessing (pp)

- MC is the most time consuming analysis step!
- Idea: Only one simulation of the whole crystal
- posterior cut events that occur in the Dead Layer
 - \rightarrow postprocessing

Dead Layer determination - postprocessing (pp)

- Postprocessing needs fine tuning
- But: looks promissing

Active Volume determination

Approach

- ²⁴¹Am and ¹³³Ba γ penetrate only the surface. Higher energys needed to "look" inside the crystal. \rightarrow Potential bubble depletion.
- Measurement: ⁶⁰Co spectrum
- Comparison: Rate of 1333 keV line to MC

Issues

- Source geometry has to be very carefully implemented into MC.
- Activity of the source has to be well known.

Active Volume determination

Possible Solution

- Better: Measure a ratio between lines to get rid of the uncertainty of the source activity.
- Solution: ²²⁸Th spectrum has a high γ line of ²⁰⁸Ta (2614 keV) Measurement of the double- to single-escape-peak ratio would be possible due to pair production.

Summary

- BEGe detectors are stable \rightarrow no significant drifts.
- Geometry of detector and holder can be checked with a collimated source \rightarrow surface scan.
- Dead Layer determination is in agreement with DL stated by Canberra.
- MC postprocessing looks promising.
- AV determination with ²²⁸Th will be further inverstigated.
- Successful testing of depleted BEGe detectors
- Transfer knowledge from depleted detectors to enriched detectors
- First enrichted detectors are being tested at SCK in Belgium \rightarrow See also: Kai Freund T 109.1 \rightarrow And the following talks...