

Status of the GERDA experiment

Fabiana Cossavella for the GERDA collaboration

Max-Planck Institut für Physik, München

16 October 2012

GERDA physics goals

The GERmanium Detector Array

@ LNGS: suppression of $\mu\text{-flux}\approx 10^6$

Phase I: 3-string assembly phase I started in November 2011

- 8 refurbished enriched diodes from HdM and IGEX
- 86% isotopically enriched in ⁷⁶Ge
- 1 ^{nat}Ge detectors
- 2 diodes shut off due to high leakage current

total (enriched) mass of working phase I detectors: 14.6 kg

Phase I: 3-string assembly

- ²²⁸Th calibration every one to two weeks
- resolution, FWHM: 4.5 keV at $Q_{\beta\beta}$ (mass weighted average)

GERDA/LArGe measurement: (93.0 \pm 6.4) $\mu {\rm Bq/kg}$ stat.+syst.

 Alpha candidate event rates different for individual detectors, suggesting a surface contamination mostly on two detectors

 Monte Carlo studies suggest ²¹⁰Po decays on the p+ contact/groove surface

GERDA/HdM BI ratio about 1/10

Current status

Phase I

- approximatively 10 kg yr of data acquired until September 2012
- GERDA Phase I completion expected in spring 2013: unblinding and physics analysis
- + T_{1/2} (90% C.L.) $> 1.9\cdot 10^{25}$ yr (assuming no $0\nu\beta\beta$ signal and current BI)

Phase II

- reduce background by factor > 10 with respect to phase I
- increase mass: up to additional 30 enriched BEGe detectors (20 kg)
- liquid argon veto instrumentation
- construction of new lock system and development of phase II front end electronic ongoing

Phase II detectors

Broad-Energy GErmanium (BEGe) detector

- Low capacitance \rightarrow high energy resolution: 1.6 keV @ 1.332 MeV
- good pulse shape discrimination:

Signal for different trajectories

Fabiana Cossavella

Status of the GERDA experiment

Phase II detectors

D. Budjas et al., JINST 4P10007 (2009)

Broad-Energy GErmanium (BEGe) detector

- Low capacitance \rightarrow high energy resolution: 1.6 keV @ 1.332 MeV
- good pulse shape discrimination:

- PSA accepting 90% of 208 TI DEP (SSE $\rightarrow 0 \nu \beta \beta$ -like)
- about 10% survival of the $^{212}{\rm Bi}~\gamma{\rm -line}$ (mainly MSE)

Ge-Procurement and Detector fabrication for Phase II

complete production chain tested with depleted Ge:

- 2005: 37.5 kg GeO2 produced by ECP, Zelengorsk, Russia
- 2010: Reduction and zone refinement, PPM Metals GmbH, Rammelsberg, Germany
- 2011: Transport to Oak Ridge, United States
- 2011-12: Crystal pulling and cutting, Canberra, Oak Ridge
- 2012: Diode fabrication & testing, Canberra, Geel, Belgium.

Ge-Procurement and Detector fabrication for Phase II

complete production chain tested with depleted $\mbox{Ge:}$

Detector Production Status:

- crystals pulling completed: 30 crystal slices (20.5 kg)
- 28 diodes produced
- End of 2012: up to 30 phase II detectors available
- up to 15 kg residual ^{enr}Ge material: needs chemical purification

GERDA Phase II

June 2012: 5 $^{\rm enr}{\sf BEGe}$ deployed in GERDA

Liquid Argon instrumentation

[[]M.Heisel, PhD thesis]

Operation of Phase II detector prototype in LArGE:

- measured suppression factor at $Q_{\beta\beta}$, e.g. $\approx 1.2\cdot 10^3$ for a 228 Th calibration source close-by detectors
- successful scintillation light read out with fibers couples to SiPMs

Liquid Argon instrumentation

Also R&D on large area avalanche photodiodes and UV sensitive SiPMs to detect ligth inside mini-shroud

Conclusions

- GERDA aims to determine $T_{1/2}^{0\nu}$ of ^{76}Ge via an innovative approach: concept working!
- Phase I started in November 2011: \approx 10 kg yr exposure reached
- blinded ROI: (Q $_{\beta\beta} \pm 20$ keV)
- expected sensitivity: $T_{1/2}(90$ % C.L.) $> 1.9\cdot 10^{25}$ yr (assuming current BI and 20 kg yr exposure)

Preliminary results

5.04 kg yr exposure:

- $\mathsf{T}_{1/2}^{2
 u} =$ (1.88 \pm 0.10) $\cdot 10^{21}$ yr
- $^{42}\mathrm{Ar}$ activity: (93.0 \pm 6.4) $\mu\mathrm{Bq/kg}$
 - (> factor 2 larger than 90 % published limit)

6.1 kg yr exposure:

• BI $\approx 0.02 \text{ counts/(keV kg yr) w/o pulse shape analysis}$

Phase II

- $\,\approx\,20$ kg new enriched diodes produced by end of 2012
- installation of LAr scintillation veto
- goal: Bl $\leq 0.001~\text{counts}/(\text{kev kg yr}) \rightarrow T_{1/2} > 1.5 \cdot 10^{26}~\text{yr}$

- All diodes reprocessed and optimized for LAr
- Well tested procedure for detector handling
- Long term stability in LAr established
- Energy resolution in LAr: ~2.5 keV (FWHM) @1.3 MeV

8 diodes (from HdM, IGEX):

- Enriched 86% in ⁷⁶Ge
- Total mass 17.66 kg

6 diodes from Genius-TF:

- ^{nat}Ge
- Total mass: 15.60 kg

[16] H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, "The Evidence For The Observation Of 0νββ Decay: The Identification Of 0νββ Events From The Full Spectra," Mod. Phys. Lett. A 21, 1547 (2006).

Table 2 Bayesian posterior probabilities $p(\bar{H})$ using EXO-200 data for the hypothesis that the $0v\beta\beta$ signal of Heidelberg-Moscow is correct. Probabilities are given for different matrix element calculations and for the $\pm 1\sigma$ and $\pm 2\sigma$ energy windows.

method	expected signal events	p(<i>Ĥ</i>) in %	expected signal events	$p(\bar{H})$ in %
	in $\pm 1\sigma$ window		in $\pm 2\sigma$ window	
QRPA max	4.4 ± 1.1	4	6.1 ± 1.5	6
QRPA min	2.8 ± 0.7	11	3.9 ± 0.9	16
ISM	10.6 ± 2.5	0.1	14.8 ± 3.5	0.2
GCM	14.3 ± 3.4	0.03	19.9 ± 4.8	0.05
pnQRPA	6.3 ± 1.5	1	8.8 ± 2.1	2
IBM	6.1 ± 1.5	1	8.6 ± 2.1	2

N.B. comparison with HdM claim (28±6.86) cts in 71.7 kg yr

B. Schwingenheuer, Annalen der Physik, August 22, 2012

