Status of the GERmanium Detector Array Experiment (GERDA) at LNGS

C.M. Cattadori- INFN-Milano Bicocca Per la collaborazione GERDA

Outline

- Neutrinoless Double Beta Decay ($0\nu\beta\beta$) & ⁷⁶Ge
- The design and construction of the GERDA setup.
 - The milestones
 - The Water Tank & The Cerenkov Muon veto
 - The Cryostat
 - The Ge detectors
 - The Ge detectors readout
 - The calibration system
- The first 3 months of data taking
- Preparation of GERDA Phase II
- Conclusions

Proposed by Majorana & Racah in 1937 (Il Nuovo Cimento).

It is forbidden in SM and requires

- Lepton number violation
- Neutrino is a Majorana particle having finite mass

or

• Existence of W_R

 $\Delta L=2_{v_e} = v_e$ $< m_v > \neq 0$

Bologna, 20th September 2010

Why another experiment on ⁷⁶Ge 214**Bi** 214**Bi** $0\nu\beta\beta$ decay? 20 A debated claim @ 4.2 σ indicate Count s/keV evidence of $0\nu\beta\beta$ with $T_{1/2} = 1.2 \text{ x } 10^{25} \text{ y}$ m_{ee} = 440 meV with KK NME Estimated NME favorable in all the 2010 2020 2030 2040 2050 2060 Energy, keV models $T_{1/2}^{0v} \sim 10^{27}$ y (for $< m_v > = 40$ 6 IBM-2 (Barea et lachello, 2009) meV: $M_{0v}^{nucl} \sim 4$ QRPA (Símkovic et al., 2008) SM (Caurier et al., 2008) 5 □ Q_{ββ}=2039.06±0.05 keV nuclear matrix element 4 $\mathbf{M}^{(0v)}$ 3 2 ē $(\mathbf{T}_{1/2}^{0\nu})^{-1} \sim 5 \ge 10^{-17} [y^{-1}] F_{0\nu} (Q,Z) |M_{0\nu}|^2 m_{\nu}^2 / m_e^2$ 100 Mo ¹³⁶Xe ¹⁵⁰Nd ¹¹⁶Cd ¹²⁸Te ¹³⁰Te ⁷⁶Ge $\mathbf{0}_{\mathbf{V}\boldsymbol{\beta}}$ half-life **Nuclear Effective Majorana** Phase Measured qty Matrix neutrino mass pace... C.M. Cattadori - XCVI Congresso SIF **Elements** Scale factor **Deduced** qty

GERDA: Sensitivity

GERDA I \rightarrow scrutinize in ~ 1 year data taking (assuming 18 kg y exposure) the KK claim: if true $\beta\beta$ decay GERDA will have 7 cts, above bckg of 0.5 cts \rightarrow probability that bckg simulate signal ~ 10⁻⁵

Bologna, 20th September 2010

C.M. Cattadori - XCVI Congresso SIF

GERDA: The Collaboration

H. Aghaei^m, M. Agostini^f, M. Allardt^c, A.M. Bakalyarov^l, M. Balata^a, I. Barabanov^j, M. Barnabe-Heider^f, L. Baudis^q, C. Bauer^f, N. Becerici-Schmid^m, E. Bellotti^{g,h}, S. Belogurov^{k,j}, S.T. Belyaev^l, A. Bettini^{n,o}, L. Bezrukov^j, V. Brudanin^d, R. Brugnera^{n,o}, D. Budjas^f, A. Caldwell^m, C. Cattadori^{g,h}, F. Cossavella^m, E.V. Demidova^k, A. Denisiv^j, A. Di Vacri^a, A. Domula^c, A. D'Andragora^a, V. Egorov^d, A. Ferella^q, K. Freund^p, F. Froborg^q, N. Frodyma^b, A. Gangapshev^j, A. Garfagnini^{n,o}, S. Gazzano^{f,a}, R. Gonzalea de Orduna^e, P. Grabmayr^p, K.N. Gusev^{*l,d*}, V. Gutentsov^{*j*}, W. Hampel^{*f*}, M. Heisel^{*f*}, S. Hemmer^{*m*}, G. Heusser^{*f*}, W. Hofmann^f, M. Hult^e, L.V. Inzhechik^j, J. Janicsko^m, J. Jochum^p, M. Junker^a S. Kionanovsky^j, I.V. Kirpichnikov^k, A. Klimenko^{d,j}, M. Knapp^p, K-T. Knoepfle^f O. Kochetov^d, V.N. Kornoukhov^{k,j}, V. Kusminov^j, M. Laubenstein^a, V.I. Lebedev^l B. Lehnert^c, D. Lenz^m, S. Lindemann^f, M. Lindner^f, I. Lippi^o, X. Liu^m, B. Lubsandorzhiev^j, B. Majorovits^m, G. Meierhofer^p, I. Nemchenok^d, L. Pandola^a K. Pelczar^b, F. Potenza^a, A. Pulliaⁱ, S. Riboldiⁱ, F. Ritter^p, C. Rossi Alvarez^o R. Santorelli^q, J. Schreiner^f, B. Schwingenheuer^f, S. Schönert^f, M. Shirchenko^{l,d}, H. Simgen ^f, A. Smolnikov ^{d,j}, L. Stanco^o, F. Stelzer^m, M. Tarka^q, A.V. Tikhomirov^l C.A. Ur^o, A.A. Vasenko^k, A. Vauth^m, O. Volynets^m, M. Weber^f, M. Wojcik^b, E. Yanovich^j, S.V. Zhukov^l, D. Zinatulina^d, F. Zoccaⁱ, K. Zuber^c, G. Zuzel^b,

^a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy ^b) Institute of Physics, Jagellonian University, Cracow, Poland ^c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany ^d) Joint Institute for Nuclear Research, Dubna, Russia ^e) Institute for Reference Materials and Measurements, Geel, Belgium ^f) Max Planck Institut für Kernphysik, Heidelberg, Germany ^g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy ^h) INFN Milano Bicocca, Milano, Italy ⁱ) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy ^j) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ^k) Institute for Theoretical and Experimental Physics, Moscow, Russia ¹) Russian Research Center Kurchatov Institute, Moscow, Russia ^m) Max-Planck-Institut für Physik, München, Germany ⁿ) Dipartimento di Fisica dell'Università di Padova, Padova, Italy ^o) INFN Padova, Padova, Italy ^p) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany ^q) Physik Institut der Universität Zürich, Zürich, Switzerland

http://www.mpi-hd.mpg.de/GERDA

~ 95 physicists 17 institutions 6 countries (Germany, Italy, Russia, Poland,Belgium;Switzerland)

GERDA: a novel, ambitious approach to the background issues

GERDA goal: build a setup with a B< 10⁻³ [c/kky] @ Q_{β}

GERDA distinctive features to reduce bckrgd of 10⁻⁶

• Ge diodes operated naked in LAr

GERDA milestones

- Proposed in 2004 & funded by MPG
- Approved in 2005 by LNGS with location in Hall A
- 2005 Funded by BMBF, INFN, DFG (R&D), and Russia in kind
- WT & related plants:
 - Contract signed in 2006
 - Construction in LNGS Hall A 2007-2008
 - Muon veto constructed in 2009
- Cryostat & cryogenic systems
 - Contract signed in 2007
 - Construction @ company site in 2007-2008
 - Delivered @ LNGS in 2008
 - filled with LAr in Dec '09 & cryogenic commissioning completed
- Building
 - Constructed in 2008
- Clean room & Lock
 - Constructed in 2009> Lock tested in 2009, moved underground in 2010
- Detectors:
 - Refurbishment technology defined in 2008 after proofing long term stability in LAr Bologna, 20th September 2010
 C.M. Cattado

GERDA

The GERmanium Detector Array for the search

of neutrinoless $\beta\beta$ decays of ⁷⁶Ge at LNGS

Proposal September 2004

C.M. Cattadori - XCVI Congresso SIF

Pictures from the construction time (2007-2010)

Picture

The main GERDA subsystems

GERDA is a composite setup. The main sub-systems are listed in the fololwing:

- Cryostat (and relate plants)
- Water tank e μ-veto (and related plants)
- Detectors insertion system (lock)
- Detectors
- Pulse readout and processing
- Calibration system

The Cryostat: design

The cooling serpentine: to sub-cool the LAr. No LAr refilling needed

dedicated meas show that Rn in cryostat

~55 mBq with manifold, bellow, piping, sensors, cabling,

- Temp. difference suppresses exchange of LAr from neck and tank
- Rn in convective layers w/o shroud: 30 mBq => 2.10⁻³ cts/(keV.kg.y)
- Rn in convective layers with shroud: 30 mBq => 1.5.10⁻⁴ cts/(keV.kg.y)
- Homogenous mixing of radon in LAr: 30 mBq => 4.10⁻⁴ cts/(keV.kg.y) C.M. Cattadori - XCVI Congresso SIF

The Phase I enrGe detectors

Detector	Total mass	HV (V)	
	(g)		
ANG 1	958	3500	
ANG 2	2833	4000	
ANG 3	2391	3000	
ANG 4	2372	3000	
ANG 5	2746	1800	
RG 1	2110	4500	
RG 2	2166	4000	
RG 3	2087	3500	
GTF 32	2321	3200	
GTF 42	2467	3000	
GTF 44	2465	3500	
GTF 45	2332	1500	
GTF 110	3046	3000	
GTF 112	2965	2500	
Prototype	1560	3000	

• 8 ^{enr}Ge (former HdM&IGEX) + 6 ^{nat}Ge (from GTF) p-type coaxial Ge detector available

- mass:1-3 kg
- C_{det} = 30-40 pF
- Deployed in strings of 3 detectors each
- Mounted in low-mass Cu holders
- HV contact: on Li surface by pressure
- Readout contact: in borehole springloaded
- All the detectors have been tested naked in LAr and perform well (I-V & R < 3 keV
 @ 1.332 MeV).
- Long term stability experimentally proved

C.M. Cattadori - XCVI Congr

The Ge detector readout: Front-end

 Cryogenic FE circuit g-ray spectrometry class. Architecture: external JFET + following amp. stage (CMOS OPAMP)

ASIC single-ended preamplifier produced in 0.8µm 5V CZX CMOS technology

- Achieved Performances @ LN :
 - Intrinsic noise < 1 keV (< 150 e r.m.s.)
 - Rise time: 30-40 ns
- Radiopurity (²³²Th) with screened components:
 - o 350 μBq/PCB (3ch)for ASIC FE
 - 150 μBq/PCB (3ch) for CC2 (based on commercial CMOS OPAMP)

CC2 circuit based on CMOS^SOPAMP

The Calibration System

²²⁸Th sources (γ-lines at 2614 keV, 2103 keV, 1592 keV, 583 keV) inserted besides detector strings
a 20 kBq source provides an event rate in detectors of ~ 600 Hz in calibration, allowing calibration ~ 1 h

• **Ta ring**: to shield detectors when sources are in parking position

 parasitic n-activity of sources from (α,n) reaction on substrate materials measured with dedicated setup

(2.7 \pm 0.5) x 10⁻² n/s for the 14 kBq source

The first three months of data taking

- GERDA started the commissioning data taking with a ^{nat}Ge pilot string (3 detectors for a total mass of 7.62 kg of ^{nat}Ge)
- Few technical problems related to HV → solved
- Up to now available a statistic of ~250 kg*d divided in runs taken in different configurations
- Bad news:
 - Immediately visible an 42 Ar signal much larger (~ 15) than expected at the 1524 keV γ -line
- Good news:
 - No peak visible from none of the 238 U (1764,2204), 232 Th(2614,583 etc.), 40 Kmain γ -lines

C.M. Cattadori - XCVI Congresso SIF

Spectra collected during 17 days with 2.3 kg ^{nat}Ge detector in GERDA setup

2010june_tot_gtf32 GTF32 total of june MCA meas.

Background at $Q_{\beta\beta}$ by: β , bremsstrahlung from β and 2424 keV γ -ray

- $T_{1/2} = 12.36 h$
- Q = 3525.4 keV
- Mostly a pure β emitter
 - Most intense γ ray at 1524.73 keV (18.1%)
- γ(⁴²Ca) from ⁴²K (12.360 h) β⁻ decay < for Iγ% multiply by 0.18089>

312.6 († 1.86 11) E2 **586.87** († 0.0021) **694.54** († 0.018 4) (E1) **899.43** († 0.285 14) M1+E2: δ = -0.18 2 **1022.78** († 0.111 8) (E1) **1227.66** († 0.013 6) (E2) **1524.70** († 100) E2 **1922.18** († 0.228 22) E1(+M2): δ =+0.02 7 **2424.09** († 0.110 16) E2

⁴²Ar: expected values and possible origin

 ⁴²Ar is mainly generated by ⁴⁰Ar(α,2p)⁴²Ar reaction in atmosphere and fall-out from atmospheric nuclear explosions

measurements of upper concentration limits of ⁴²Ar in Ar [µBg/ILAR] 1992 Arpesella et al. LNGS internal report 92/27: 1.2x10-18 atoms 42/40 = 16800 1995 Cennini et al.(ICARUS 3t) NIM A 356,526-529: 4x10-18 atoms 42/40 = 56000 1998 Ashitkov V.D.et al. NIM A 416, 179-181: 6x10-21 atoms 42/40 = 84 1999 Ashitkov V.D. et al. Nucl. Phys.(Proc Suppl.)70,233: 5x10-21 g/g = 70 2002 Barabash A.S. Proc. W.S. Xenon detectors (2001): 3x10-21 atoms 42/40 = 42 2003 Ashitkov V.D. et al. arXiv:nucl-ex/0309001 : 4.3x10-21 g/g = 60 2004 Ruben Saakyan thesis. : 4.3x10-21 atoms 42/40 = 60 Liquid Ar ionization chamber to measure ¹⁰⁰Mo

Simulated ⁴²Ar spectrum in GERDA geometry (detectors surrounded by homogeneous LAr bath)

Possible explanations and actions

- The reference 42 Ar conc. measurements are wrong (of a large factor \rightarrow unlikely)
- The ⁴²Ar concentration in atmosphere has large variations, and the GERDA LAr has a particularly high concentration of ⁴²Ar
 - \rightarrow measure in two independent setups (GERDA & LARGE).
- The ⁴²K⁺, which is produced positively charged in the ⁴²Ar β decay, is not uniformely distributed around the detectors: ⁴²K⁺ (lifetime in LAr unknown) is drifted towards the detectors holder (GNDed surfaces) and detector borehole, by the detector bias E_{field} dispersed in LAr (detectors are naked!):
 - indications of this mechanism comes from (Cts@Peak)/(Cts above peak) ratio
- Perform a series of runs placing the metallic surfaces around the detectors (shroud and mini-shroud) at various potentials and measure the cts rate: → results encouraging, already achieved a relevant reducing factor. Continue on this road!

Bologna, 20th September 2010

The mini-shroud

- A Cu mini-shroud has been inserted,
 - to close field lines onto a surface few cm away from the detector (not onto detector holders)
 - To prevent ions sucked from the from the LAr bath to reach the detector
- The detector string is inside the mini-shroud
- Significant ⁴²K signal reduction
- No bkgrd increase

C.M. Cattadori - XCVI Congresso SIF

The Next steps

In the next months our activity will follow this scheme :

- Complete the measurements devoted to understand the ⁴²Ar signal and pursue mitigation actions
- Installation of the 3-string arm
- Test of 3-string arm with mockup & capacitors.
- Optimization of noise in the underground setup (grounding, tests with FE+ capacitors and detector mockup).
- Deploy the ^{enr}Ge detectors

The preparation of GERDA Phase II: enrGe processing

on 30 April 2010

- 36.6 kg >50 Ohm material produced.
 97% of the 37.5 kg available ^{enr}Ge is now 6N material.
- The integrated exposure has been about 5.2 days including the transport from Geel.
- All the material is packed in two boxes and is underground in the Rammelsberg mine.

PHASE II Detectors allowing enhanced PSD: Choice of BEGe as reference type

•Applying PSA cuts and requiring 90% survival probability for the ²³²Th DEP (mostly Single Site Events $\rightarrow 0\nu\beta\beta$ -like)

- 12% survival of the γ -line ²¹²Bi line (mostly Multi-Site Events $\rightarrow \gamma$ -bgd like)
- Segmented & BEGe show similar PSD performances, but BEGe simplest readout and cabling → benefit for setup radiopurity

• 3 ^{nat}Ge + 2^{depl}Ge BEGe detctors tested so far: all of them excellent <u>En Res < 2.0 keV @ 1.332 MeV</u>

PSD: comparison of results from all the BEGe tested in GERDA

				PSD Acceptance [%]				
Dim.sns	Conta ct dim [mm]	Mass [g]	V _{depl} [V]	Compton @Qbb	DEP 1592 keV	FEP 1621 keV	SEP 2103 keV	FEP 2614 keV
81 x 32 Hd	15	868	4000 3700	39 ± 2	90±1.6	9.5±1.5	5.8 ± 0.6	7.7 ± 0.7
70 x 32 LNGS	15	632	3000 2600	37.5±0.5	90±0.6	11.5±0.1	6.2±0.4	6.4±0.1
60 x 26 Geel	15	390	3000	45 ± 2	90 ± 3	18 ± 3	6.8 ±1.7	14 ± 3
80 x 30 Geel	15	825	3500	49 ± 2	90 ± 3	29 ± 2	23 ± 2	Not avlbl
74 x 33 Depl CC	9	752	3500	38.3 ± 0.3	90 ±1.1	10 ± 0.6	5.4 ±0.3	8.3 ± 0.1
74 x 32 Depl DD	22	~750	3500	39.8±0.3	90±1.1	11.3±0.6	5.8±0.4	8.8±0.1

Bologna, 20th September 2010

C.M. Cattadori - XCVI Congresso SIF

Phase II: The recentest results with bare BEGe (80 x 40 mm) & cold FE in LARGE setup (@GDL): long term stability proved

Conclusions

- The construction of the GERDA setup at LNGS is completed since spring 2010.
- All the recommendations of the safety review have been implemented
- Commissioning started in june 2010 with a pilot string of 3 ^{nat}Ge detector
- Performances not as good as in September 2009 tests (R= 5-7 keV @ 2614 keV) dominated by EM disturbances
- Available a statistic of ~250 kg*d
- A concentration of ⁴²Ar a factor ~ 15 larger than expected (from measurements available in literature) is observed
- Actions are ongoing to understand the origin of the extra ⁴²Ar signal and to mitigate its impact on the detector background index
- Still no background visible from U, Th and K (B of the setup matches the design)
- Run with ^{enr}Ge will then follows (time schedule depends on the outcome of the ongoing commissioning)
- The BEGe detectors have been chosen as reference detectors for the GERDA PHASE II. We are defining and negotiating the contract with Canberra to produce the ^{enr}Detectors for GERDA Phase II. The x-tal pulling and diode production will start spring 2011.

Bologna, 20th September 2010

EXTRA slides

Signature of $0\nu\beta\beta$ decay and sensitivity on $T^{0\nu}_{1/2}$

$0\nu\beta\beta$ rate and the effective neutrino mass

 $0\nu\beta\beta$ rate ~ (effective Majorana neutrino mass)²

⁷⁶Ge is an appealing $0\nu\beta\beta$ candidate

Germanium detectors are an established technology.

- □ Feasible to scale up experiment by subsequently adding more detectors → GERDA staged approach (Phase I +Phase II)
- □ Ge density = 5.3 g cm⁻³ \rightarrow compact setup
- □ Source = detector \rightarrow high efficiency!
- High intrinsic purity and energy resolution O(0.1%-0.2%) allowing understanding of background sources and geometry.

Sensitivity
on
$$T_{1/2}^{0\nu}$$
 $T_{1/2}^{0\nu} = \frac{4.16 \cdot 10^{-26} \frac{0.89}{y}}{n_{\sigma}} \times \frac{20 \text{ kgy Phase I}}{W} \sqrt{\frac{Mt}{BR}} = \frac{20 \text{ kgy Phase I}}{110 \text{ kgy Phase II}}$

- ⁷⁶Ge isotopic abundance = 7.44 %, but enrichment of ⁷⁶Ge possible at centrifuge up to >80% (reasonable cost)
- Low Atomic Weight (1 kg of ⁷⁶Ge = 13.1 Moles = 7.9 x 10²⁴ nuclei) ^{C.M. Cattadori - XCVI Congresso SIF}

The Ge detectors performances achieved so far in LAr in summer 2009 tests (first commissioning)

Modifications to the detector suspension and moving (up/down) defined and

Bologna, 20th September 2010

Best resolution achieved in setup: 2.7 keV (FWHM)

C.M. Cattadori - XCVI Congresso SIF