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Abstract.

The GERmanium Detector Array Gerda is designed to search for neutrinoless double
beta decay of 76Ge. This search is necessary to establish the nature of the neutrino (Dirac
or Majorana) and is emphasized by the evidence of a non-zero neutrino mass from flavour
oscillations and by the claim for a positive signal based on data of the Heidelberg-Moscow
experiment. Gerda will be installed in the Gran Sasso underground laboratory of INFN/Italy.
The experiment is designed to collect at the end of phase II an exposure of about 100 kg·y
quasi background free. This leads to a requirement of a background index of the order of
10−3 counts/(kg·keV·y) at the Qββ–value of 2039 keV.

1. Introduction

The GERmanium Detector Array Gerda [1] is a new double beta decay experiment using
76Ge. To achieve better sensitivity a significant reduction of background compared to previous
experiments is required. The main concept for background suppression followed by Gerda is
the operation of bare Ge-diodes enriched in 76Ge in ultrapure liquid argon. Liquid argon acts
as passive shield and cooling medium for the diodes. It is contained in a stainless steel vacuum
cryostat. Additional shield against external neutrons and gamma-rays is provided by pure water
surrounding the cryostat. The water tank is equipped with photo multiplier tubes and operated
as a Cherenkov detector to reject residual cosmic muons. Enriched 76Ge-diodes will be prepared
in a cleanroom and inserted into a lock system from where they are lowered inside the cryostat.

2. Sensitivity

The Gerda experiment is performed in different phases: In phase I 17.9 kg of existing 76Ge
diodes from the previous Heidelberg-Moscow and IGEX experiments will be re-used. At the
expected background rate of 10−2 counts/(kg·keV·y) around the Q-value of the 76Ge decay
(2039 keV) the resulting sensitivity for the half-life of the neutrinoless double beta decay is
2 · 1025 y after 1 year of exposure. This is sufficient to scrutinize the existing claim for a
positive signal [2]. In phase II new diodes will be added to increase the active mass up to 40 kg.
A major progress in sensitivity can only be obtained if the background can be suppressed to
10−3 counts/(kg·keV·y). This will be achieved by segmented detector readout, minimization of
cosmic ray exposure, pulse shape discrimination and careful selection of construction materials.
The expected sensitivity lies around 130 meV for the effective neutrino mass at an exposure of
100 kg·y. A third phase aiming to the inverted neutrino mass hierarchy regime would require
about 1 ton of 76Ge target material as well as a further reduction of background.



3. Status of selected sub-projects

3.1. Liquid argon purity

Liquid argon will be in direct contact to the Germanium diodes. Thus, it has to fulfill stringent
purity requirements. The most worrisome radio-active contamination in argon is 222Rn and in
particular its progeny 214Bi. Radon can be removed from argon by cryogenic adsorption on
activated carbons. In a series of measurements it was found that a concentration reduction of
more than a factor 2500 can be achieved with 1 kg of activated carbon if the purification happens
in gas phase. For liquid phase purification which is relevant for Gerda the efficiency is about
one order of magnitude worse. However, due to the relatively short half-life of 222Rn a reduction
can also be obtained by storing liquid argon in a clean storage tank. For this reason the 222Rn
emanation rate of cryogenic storage tanks was investigated. Although many tanks had rather
high 222Rn emanation rates a few sufficiently clean tanks could be identified. One of them with
a volume of 6.3 m3 and a 222Rn activity of (3.5 ± 0.2) mBq in saturation might be available for
the Gerda experiment.

3.2. Cryostat

To achieve the ambitious background goals also the Gerda stainless steel cryostat must fulfill
stringent radio-purity requirements. In particular, the high energy gamma lines from 208Tl and
214Bi from U/Th contaminations must be suppressed sufficiently. This is achieved by a careful
selection of radio-pure stainless steel and the installation of copper plates inside the inner wall
of the cryostat. More than 10 batches of stainless steel type 1.4571 were screened with low
background Germanium spectrometers. The activities found for 226Ra/228Th lie in most cases
below 1 mBq/kg [3]. This is significantly lower than what was expected from results of previous
stainless steel screening campaigns [4]. As a consequence the required amount of copper could
be reduced by more than a factor 2 which relaxed mechanical constraints and costs significantly.
The cryostat is under construction now and is planned to be delivered to Gran Sasso beginning
of 2008.

3.3. GERDA detector laboratory

The Gerda detector laboratory is located in close neighborhood to the main Gerda site in
hall A of the Gran Sasso underground laboratory. It is a facility offering all equipment for
handling and manipulations of bare Germanium diodes like a chemical hood and clean benches.
One of the clean benches is air tight so that a 222Rn-free atmosphere can be provided. Diodes
mounted there can directly be tested in an attached liquid argon test stand without being
exposed to air. The Gerda detector laboratory also hosts a larger (1 m3) liquid argon test
stand called LArGe. Besides detector testing it will be used for liquid argon scintillation light
studies. LArGe is under construction and will be operational in 2008.

3.4. Preparation of existing diodes

For phase I of Gerda existing Germanium diodes enriched in 76Ge from previous experiments
are used. Altogether 8 diodes with a mass of 17.9 kg are available corresponding to ∼ 15 kg
of pure 76Ge. After a careful characterization of the diodes they have been removed from
their cryostats. Then their dimensions were measured and they were stored in an underground
location (HADES) in Belgium. Together with Canberra / Olen in Belgium they were prepared
for the operation without vacuum cryostat. A refurbishment including a loss of a few grams of
76Ge was tolerated for some of the diodes which had a different contact scheme. Now all diodes
have the same well tested and well understood contact scheme which increases the confidence of
save operations in liquid argon.



3.5. Prototype testing for phase I

For the last 2 years intensive tests with a phase I prototype crystal have been performed. It is
mounted in a low mass (∼ 80 g) support structure made out of copper and PTFE. Both materials
were screened by gamma ray spectroscopy and only upper limits for U/Th contaminations
were found (in the range of 20 µBq/kg for copper and 100 µBq/kg for PTFE). Monte Carlo-
simulations have shown that the background from the material of the detector holder fulfills
the requirements for phase I. Handling of bare diodes is very delicate, because the passivation
layer is very sensitive. In particular, it is important to be able to warm up and cool down the
diodes without damaging them. Meanwhile, more than 40 cooling and warming cycles have
been performed and the passivation layer had to be renewed only twice. This shows that the
detector handling process is well under control. Also the response of the diode’s leakage current
to irradiation with gamma ray sources was investigated. A reversible increase of the leakage
current was observed which was strongest when the passivation layer was irradiated directly.
Covering this side of the diode with a PTFE/Cu/PTFE sandwich disk solved the problem.
A several months lasting long-term test showed only a negligible increase of leakage current.
Further improvements are under development.

3.6. Preparations for phase II

In 2005 37.5 kg of enriched 76Ge was produced for the phase II diodes. Currently, techniques
are being optimized to reach the chemical purity necessary for crystal pulling and to improve
the yield and thus to minimize the loss of enriched Germanium. In parallel different options for
crystal pulling are investigated. Until the preparation of the next steps is finished the material is
stored in an underground location to avoid cosmogenic activation. The phase II detectors will be
n-type detectors with segmented readout electrodes. The background suppression by segmented
detectors is currently tested with several test setups. Promising results were obtained with the
chosen segmentation scheme of 3x6 segments (3 along z-coordinate and 6 azimuthal segments).

4. Outlook

The Gerda experiment will become operational in 2009. After 1 year of data taking with the
existing diodes the claim by [2] for a 0νββ-decay will be checked unambiguously. If it would
not be confirmed even after phase II the goal must be to do a ∼ 1 ton experiment to access
the range of inverted neutrino mass hierarchy. Since this can only be afforded in a world-wide
collaboration a close contact with the Majorana project has already been established aiming to
a common large-scale experiment in the future.
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