

GERDA Collaboration

INFN LNGS, Assergi, Italy

A.Di Vacri, M. Junker, M. Laubenstein, C. Tomei, L. Pandola

JINR Dubna, Russia

S. Belogurov, V. Brudanin, V. Egorov, K. Gusev, S. Katulina, A. Klimenko, O. Kochetov, I. Nemchenok, V. Sandukovsky, A. Smolnikov, J. Yurkowski, S. Vasiliev,

MPIK, Heidelberg, Germany

C. Bauer, O. Chkvorets, W. Hampel, G. Heusser, W. Hofmann, J. Kiko, K.T. Knöpfle, P. Peiffer, S. Schönert, J. Schreiner, B. Schwingenheuer, H. Simgen, G. Zuzel

Univ. Köln, Germany

J. Eberth, D. Weisshaar

Jagiellonian University, Krakow, Poland M.Wojcik

Univ. di Milano Bicocca e INFN, Milano, Italy E. Bellotti, C. Cattadori

INR, Moscow, Russia

I. Barabanov, L. Bezrukov, A. Gangapshev, V. Gurentsov, V. Kusminov, E. Yanovich

ITEP Physics, Moscow, Russia

V.P. Bolotsky, E. Demidova, I.V. Kirpichnikov, A.A. Vasenko, V.N. Kornoukhov

Kurchatov Institute, Moscow, Russia

A.M. Bakalyarov, S.T. Belyaev, M.V. Chirchenko, G.Y. Grigoriev, L.V. Inzhechik, V.I. Lebedev, A.V. Tikhomirov, S.V. Zhukov

MPP, München, Germany

I. Abt, M. Altmann, C. Büttner. A. Caldwell, R. Kotthaus, X. Liu, H.-G. Moser, R.H. Richter

Univ. di Padova e INFN, Padova, Italy

A. Bettini, E. Farnea, C. Rossi Alvarez, C.A. Ur

Univ. Tübingen, Germany M. Bauer, H. Clement, J. Jochum, S. Scholl, K. Rottler

Physics goals of GERDA

Primary Objective:

0 $\nu\beta\beta$: (A,Z) \rightarrow (A,Z+2) + 2e⁻

⇒Majorana nature

 $\Rightarrow \text{Effective mass: } 1/\tau = G(Q,Z) |M_{nucl}|^2 m_{ee}^2, \text{ (decay generated by (V-A) cc-interaction via exchange of light Majorana neutrinos)}$

Other Physics: WIMP DM search

Method:Operation of HP Ge-diodes enriched in 76 Ge
in (optional active) cryogenic fluid shield.
Line search at $Q_{\beta\beta} = 2039 \text{ keV}$

GERDA @ Gran Sasso: experimental concept

• HP Ge-diodes (86%⁷⁶Ge): **point-like** energy deposition at $Q_{BB} = 2039 \text{ keV}$

Klapdor-Kleingrothaus., Baudis, Heusser, Majorovits, Päs, hep-ph/9910205 Zdesenko, Ponkratenko, Tretyak nucl-ex/0106021

Why Ge-76?

- High resolution (<4 keV @ $Q_{\beta\beta}$): no bgd from 2v-mode
- Huge leap in sensitivity possible ...
 - ...applying ultra-low background techniques
 - ...novel background / $0v-\beta\beta$ signal discrimination methods (ie. point-like vs. compton events)
 - Segmentation & pulse shape (with true coaxial detectors)
 - Liquid argon scintillation read out
- Phased approach: increment of target mass
- Only method to scrutinize 0v-DBD claim on short time scale: test T_{1/2}, not m_{ee} !

Phases and physics reach of GERDA

Phases and Physics reach of GERDA

world-wide collaboration for Phase-III; coop. with MAJORANA started

Phases and Physics reach of GERDA

Taking Faessler's ME (cf. his presentation this morning) : P-I: 0.31 eV, P-II: 0.12 eV; P-III: 0.02 eV

GERDA Dark Matter sensitivity

Assumptions: background: 0.05 cts/(keV_{rec}·kg·y); threshold: 30 keV_{rec}("no ³H") / 57 keV_{rec}("³H") exposure: 100 kg year (^{nat}Ge)

...how to reach $<10^{-3}/(keV \cdot kg \cdot y)$?

shielding against ext. γ 's à la BOREXINO...

....but with high purity liquid N_2/Ar (<0.3µBq ²²²Rn / m³(STP))

GERDA: Baseline design

Backgrounds in GERDA

derived from measurements and MC simulations

Target for phase II: $B \le 10^{-3}$ cts/(keV kg y) \Rightarrow additional bgd. reduction techniques

Background reduction techniques

- Muon Veto
- Anti-coincidence between detectors
- Segmentation of readou (Phase II)
- Pulse shape analysis (F
- Coincidence in decay cl
- Scintillation light detection

Background reduction techniques

- Muon veto
- Anti-coincidence between detectors
- Segmentation of readout electrodes (Phase II)
- Pulse shape analysis (Phase I+II)
- Coincidence in decay chain (Ge-68)
- Scintillation light detection (LArGe)

Background simulations with MaGe

(common Majorana-Gerda Geant4 MC framework)

Description of the Gerda setup including shielding (water tank, Cu tank, liquid Nitrogen), crystals array and kapton cables

MaGe simulation of muons

Flux at Gran Sasso: 1.1 μ/m^2 h (270 GeV)

MaGe: cosmic ray muons – Ge signal

Phase I: 9 Ge crystals for a total mass of 19 kg; threshold: 50 keV

anticoincidence between 9 crystals reduces background index by factor 3

 \Rightarrow 1.0 · 10⁻³ cts/keV kg y

MaGe: cosmic ray muons - muon veto

Threshold 120 MeV \rightarrow all events cut but two 120MeV in water (~60 cm) \rightarrow 30,000 ph. \rightarrow 40 p.e. (0.5% coverage) \rightarrow 80-90 PMTs

No cuts	3.3 ⋅ 10 ⁻³ (cts/keV kg y)
Ge anti-coincidence	1.0 · 10 ⁻³
Ge anti-coinc.+ Top μ -veto (plastic scint.)	4.4 · 10 ⁻⁴
Cerenkov µ-veto	< 3 · 10⁻⁵ (95% CL)

Example: Internal ⁶⁰Co

• Assume 30 days \Rightarrow 2.5 ·10⁻³ / (keV·kg·y)

⁶⁰Co background spectrum

⁶⁰Co: suppression by segmentation

⁶⁰Co: suppression by segmentation

MaGe: ⁶⁰Co suppression by segmentation and anti-coincidence

⁶⁰Co: suppression by LAr Ge-anticoinc.

⁶⁰Co: segmentation and LAr Ge-anticoinc. are orthogonal suppression methods

Locations of GERDA

Hall A of LNGS

Infrastructures in HALL A

Figure 18: Layout of the penthouse [int.vers. 8] on top of the vessel with clean-room, lock system and the electronics-room. Numbered components are specified in subsection 5.3.

Infrastructures in Hall A: Super-insulated cryogenic vessel

Decision taking Cu vs. steel cryostat: Cu-Steel welding tests and certification

Underground detector laboratory (LArGe-Facility)

Washstand with high-purity water supply

Clean bench & Rn-free clean bench

Fume hood with charcoal filter

LArGe shield

New detectors for Phase II: Procurement of enriched Ge

) procurement of 15 kg of natural Ge ('test run')

 procurement of 30-35 kg of Ge-76 ('real run')

Specially designed protective steel container reduces activation by cosmic rays by factor 20

^{nat}Ge sample received March 7, 2005 \Rightarrow 30-35 kg of ⁷⁶Ge: Sept/Oct 2005

Status - Outlook

- GERDA approved by LNGS
- Substantial funding from MPI (Hd&Munich), Russia (in-kind), INFN, BMBF
- Start of construction end 2005
- Detector commissioning/start data taking 2006/7
- Co-operation with Majorana (MaGe, LArGe) very positive: mutual benefit!
- GERDA well on its way

