Summary of readout test of DSG prototype with IPA4 cold preamp

C. Cattadori, M. Bernabe-Heider, O. Chkvorets, K. Gusev, M.

Schircenko

Outline

- Summary of IPA4 circuit (see Nov06 Gerda meeting)
- The GERDA preamplifier based on IPA4 circuit
- Accessories for the cold read-out: HV connectors and cables.
- Summary of the tests performed with DSG prototype crystal
 - in July-August 2006
 - in December 2006- January 2007.

The tested setup (August 2006)

Solved problems of discharge on Ar side of HV feed-through due to proximity of HV to ground and low break-down of gas Ar. Solution: poor HV feed-through with Stycast 2850 FT (Dielectric Strength= 14 kV/mm) properly cured.

Long test of connector and cable terminated with C (1nF,7.5 kV) @ HV up to 4.5 kV overnight \rightarrow OK.

Adopted Cables for LARGE tests

Weight $\sim 3 \text{ g/m}$

Assuming 10 mBq/kg (actual upper limit on γ - meas of Th and U on HV cable) \rightarrow 60 μ Bq from last meter of cable (nearest to electronic)

Equivalent circuit adopted to polarize detector and CSA readout + Shaper/FADC

Noise sources in the described chain

Electronic noise originate:

- in the detector \rightarrow parallel or shot noise
- In the series resistance \rightarrow serial noise
- in the bias resistor \rightarrow
- 1/f noise

.....going to numbers

$$(Q_n / e)^2 = (2eI_d + 4kT / Rb + i_{na}^2)F_iT_p +$$

$$(4kTR_s + e_{na}^2)F_vC^2 / T_p + F_{vf}A_fC^2$$
Parallel noise
from detector LC
Parallel noise
from bias R
$$(Q_n / e)^2 = (12[\frac{1}{nA \cdot ns}]I_dT_p + 6 \cdot 10^5[\frac{k\Omega}{ns}]\frac{T_p}{R_b} +$$

$$3.6 \cdot 10^4[\frac{ns}{pF^2 \cdot nV^2 / Hz}]e_n^2\frac{C^2}{T_p}$$

1 MeV released in Ge correspond to 54 fC

 $1MeV = (10^6 / 2.98) e^- = (10^6 / 2.98) \cdot 1.602 \cdot 10^{-19} C = 54 fC$

To inject the CSA \rightarrow inject the corresponding charge into FET through the test capacitance (Test Input)

$$Q_{in} = V_{in}C_t \rightarrow for C_t = 0.5 \, pF, Q_{in} = 54 \, fC \, when \quad V_{in} = 108 mV$$

→ To know intrinsic R of the CSA inject with pulser equivalent charge of 1.3 MeV and see FWHM of the peak appearing in spectra

Spectra obtained when doing intrinsic noise resolution: take position and FWHM of pulser line then do R

• Before 28/07/2006: DSG crystal was working with Camberra warm CSA.

HV=4000 V

July-August 2006 test

LC~ 500-600 pA -> R@ Co ~ 4.2 keV(Oleg confirm?)

• On 28/07/2006: Cold IPA4 preamp was mounted.

Measurement of noise with capacitors

Crystal connected

HV=4000 V, LC~ 5000 pA

Then reduce HV on crystal

HV=3000 V \rightarrow R@ Co ~ 7 keV, R@Pulser = 6 keV

• On 28/07/2006 put back warm preamp but current high, noise, Crystal send to Camberra for reprocessing of dead layer

December 2006- January 2007 test

- Test of HV connector, cable filter without crystal
- Intrinsic resolution of the full chain measured with capacitor (cabling, mounting as with crsytal)
- 13/12/2006 Crystal connected to preamp mounted on cross

GERDA meeting - Feb 07 - C. Cattadori

Trend of meas LC and R of DSG crystal vs time @ 4000V December 2006

GERDA meeting - Feb 07 - C. Cattadori

GERDA meeting - Feb (

Test performed in January to study influence of cold CSA on the observed LC.

Survey and Compare LC with PA On and OFF

Study of the influence of cold CSA and HV filter on observed LC

.last test to do: remove Crystal and test CSA cabled with HV C to simulate crystal

Intrinsic Resolution of IPA4 cold CSA

 \rightarrow Intrinsic noise of the PA is found to be consistent with the previous measurements, and properly scales with Cd

To measure crystal LC monitor the BL level shift

Comparison of measured resolution with measured LC

- Starting from the mentioned formula,1 nA LC lead to a R degradation of 1.9 keV.
- R obtained never better than 4.1 keV (Co), and 3.5 keV (Pulser). R unconsistent with LC (300-400 pA)
- → noise pick up (observed noise at the scope@ 3 µs, not able to remove, but this noise is not present with Capacitor test with same cabling LV and HV PS, same mounting, same dewar...)

$$(Q_n / e)^2 = 12\left[\frac{1}{nA \cdot ns}\right]I_d T_p$$

= 1.9 keV for
$$I_d=1$$
 nA

Conclusion

- IPA4 chip and CSA mounted around it are robust, never failed after >10 termic cycles. Bonding wire of the chip never break, PCB and chhosen components OK.
- Two test done connecting it with crystal, but high LC appeared both times
- Cold circuit connection not responsible for the increase of LC in crystal
- Measured resolution limited by LC (parallel noise) and HF noise observed

Open issues

Dedicated test bench to test electronic to reduce handling on crystal Source of HF noise

The IPA4 N-JFET monolithic preamplifier

Sensitivity	~ 2 V/pC with $C_f = 0.5 \text{ pF} \rightarrow 108 \text{ mV/1} \text{ MeV}$ in Ge
A(f)	75 dB – 60 dB (depending on the adopted configuration)
g_m^{J1}	9.7 mA/V
W,L of J1	1820 μm, 15 μm
S _f of J1	$1.52 \text{ nV/Hz}^{1/2}$
C _i τ _r	$400 \text{ ns with } C_f = 0.5 \text{ pF}$
Output	Single ended. Do not drive 50 Ω load.
Power consumption	ion ~ 100 mW
Polarity	positive and Negative
V+,V-	+12 V, -4.8 V

IPA4+external FET BF862: J1 (g_m =9.7 mA/V) is blocked and substituted by external BF862 (g_m =30 mA/V which can be kept at 0- 60 cm from the CSA amplifying circuit

IMPORTANT: With this modification $\tau_f \sim 50-60$ ns in LAr

External FET can be put on same or separate PCB

Production of 25 FE cryogenics circuits (based on IPA4 JFET monolithic circuit) for LNGS Phase I detector tests and MU

18 fold segmented prototype

Production of PCB: 23 june at AREL, without 100 Ω output stage. PCB in DICLAD 880, 0.25 mm thick. Can be done in

The tested CSA

- PCB: DICLAD 880 0.25mm thick (MPCB= 0.57 g)
- IPA4 Chip in plastic SOIC14 case (MIPA4= 0.13 g)
- 9 HF pins for HF connection (Mpins = 0.45 g)

July – August 2006 tests: Intrinsic resolution of IPA4 CSA mounted on copper cross suspension with cabling etc.

- Measuring conditions as with crystal connected
 - HV off
 - Crystal disconnected
 - CSA connected to flange through cables (70 cm long)
 - PSA (semi-Gaussion ORTEO mod. 572) + ADC + MCA

$$-$$
 Vin= 80 fC = 1.4 MeV

	Shaping time [µs]	FWHM		E
		[keV]	Rel [%]	
	0.5	1.51	0.121	1244.85
	1.0	1.07	0.08	1337.6
;)]	2	0.98	0.07	1392.85
ĽĊ	3	1	0.071	1404.72
<	6	1.07	0.076	1411.17
	10	1.2	0.089	1439.03

Conclusion: Minimun of ENC found at 3 μ s for CD = 27 pF, FWHM = 1 keV @ 1.404 MeV \rightarrow agreement with previous measurements