

Editorial Board: proposal for a paper about 2v2β decay to excited states of ⁷⁶Se

L. Pandola

INFN, Gran Sasso National Laboratories

GERDA meeting, Munich, February 12th-14th, 2007

Paper draft

Feasibility study of the observation of the neutrino accompanied double beta-decay of ⁷⁶Ge to the 0⁺₁-excited state of ⁷⁶Se using segmented germanium detectors

K. Kröninger^a, L. Pandola^{b,*}, V. I. Tretyak^c

^aMax-Planck-Institut für Physik, München, Germany ^bINFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy ^cInstitute for Nuclear Research, Kiev, Ukraine Original idea from E. Bellotti

Paper based on internal note GSTR-06-003

 $2\nu 2\beta$ decay of ⁷⁶Ge to excited states of ⁷⁶Se has never been observed experimentally (but it must be there: **SM process**)

Not strictly a GERDA paper, but it evaluates the sensitivity for the Phase-II GERDA array

Idea: Nuclear Physics A

GERDA meeting

Luciano Pandola

The present situation

The O_1^+ level at 1122 keV

We did concentrate on the O_{1}^{+} level (1122 keV) because:

- the decay is not suppressed by spin-change and the predicted half-life is substantially smaller $(10^{21}-10^{23} \text{ y})$. The predictions cover a factor of 40!

- the decay is followed by a γ -ray cascade (γ_1 = 559 keV and γ_2 = 563 keV), which makes easier to tag events

Segmented detectors are best suited to tag these events: three-fold segment coincidence between $e^{-1}s$ and two γ -rays

> the tagging can be made more restrictive including also an energy cut (e.g. the energy measured in one or two segments is compatible with γ_1 or γ_2). Different selection cuts explored and compared

clear advantage with respect to an equivalent array of **unsegmented detectors**

GERDA meeting

Luciano Pandola

Monte Carlo studies

The signal identification efficiency and residual background were studied using the MaGe framework. Signal events were generated using DECAYO (accounts for angular correlation between γ -rays)

Background & sensitivity

Background is due to residual radioactive sources (⁶⁰Co, ²⁰⁸Tl, etc.) that are able to mimic the signal tag. The misidentification probability depends on isotope and location.

⁶⁰Co has the highest mis-identification probability because two γ -rays are emitted

100 kg \cdot y exposure

Considered array	Background counts/(kg·y)	T _{1/2} discovery potential (y)	T _{1/2} lower limit (90%) (y)
21 crystals, unsegmented in LAr	2.7 (conserv.)	0.8·10 ²³	2.2·10 ²³
21 crystals with 6x3 segment. in LAr	2.7	1.9·10 ²³	5.6·10 ²³
same definition as in the GERDA sensitivity plots GERDA meeting Luciano Pandola 6			

