### GERDA meeting, Ringberg castle February, 12-14, 2007



ICP MS measurements of ss steel for GERDA experiment Karandashev V.K. AC IPTM-HPM RAS (Chrnogolovka) Kornoukhov V.N. SSC ITEP / INR RAS (Moscow)



- 1. Six samples of ss steel type 1.4571 were measured with ICP MS ELAN DRC II (Moscow).
- 2. Content of Th-232 was defined at level of

### <= 2.4 – 4.0 mBq/kg (limit)

- 3. Such a level of Th-232 requires application of internal Cu passive shielding with modest thickness (in the cryostat design).
- 4. These 6 samples will be re-measured with another MS set up, X7 ICP MS.



## Samples of ss steel ICP MS measurements

- The Analytic Certification Testing Center of the Institute of Microelectronics Technology & High Purity Materials of Russian Academy of Science.
- The Center has been accredited by the Federal Standart of Russia (№ POCC RU.0001.513800 dated 25.02.2003).
- Head of the Center is Dr.Karandashev (karan@ipmt-hpm.ac.ru).
- We do certification of <sup>nat</sup>Ge metal and <sup>nat</sup>GeO<sub>2,</sub> and enriched Ge metal and GeO<sub>2</sub> (for GERDA Phase II)
- We certified two batches of ss steel:

December 2006 - 6 samples (MPIK) Dec 2006/Jan2007 - 2 samples (LNGS)



# Ringberg castle12 – 14 of February 2007Typical mode of the MS Spectrometer' operation

## Inductively Coupled-Mass Spectrometer

X-7 ICP-MS, Thermo Elemental, USA was used

| Plasma             | 13 L/min   |
|--------------------|------------|
| Auxiliary Gas Flow | 0,9 L/min  |
| Sample             | 0.8 ml/min |
| Resolusion         | 0.8M       |
| Range of scanning  | 175 - 245  |

#### Main parameters of mass-spectrums measurements:

- Detector mode operation: double (count of pulses and analog one);
- Scan mode:

|                      | Survey Scan |        | Peak Jumping |
|----------------------|-------------|--------|--------------|
| Number of scans      | 5           | Sweeps | 400          |
| Dwell Time           | 0.6 msec    |        | 10 msec      |
| Channels Per Mass    | 10          |        | 1            |
| Acquisition Duration | 2 sec       |        | 19 sec       |



12 – 14 of February 2007 Samples of ss steel

- Samples were first etched with a mixture of HNO<sub>3</sub> and HCl acids, then washed by DI water and dried.
- Samples have been weighed.
- Three probes to be analyzed were placed in one-chamber autoclaves, where 0,5 mL of concentrated HNO<sub>3</sub> and 1,0 mL of concentrated HCl were added and heated for 40 min at 160°C. Then the autoclaves were cooled down. The solutions from the autoclaves were transferred to beaker made of polyethylene and add 10 mL of DI water.
- Just before analysis the volume of the solutions (1 mL) were adjusted by adding DI water to have concentration of samples around of ~ 1.0 g/L (to avoid matrix effect). Then analysis was done.
- Simultaneously the same procedure was performed in two autoclaves without samples and resultant solutions were used as control samples.



- Calibration of the set up was made with standard solution, concentration of  $^{238}$ U is 1 µg/L and  $^{232}$ Th is 1 µg/L.
- Processing of mass-spectrums and calculation of element content were made with X-7 ICP software. Detection limit (DL) were calculated as

$$DL = C_i + 3*\sigma$$

where:  $C_i$  - mean value of content of i-isotope if control samples are under measurements;

 $\sigma$  - standard deviation for isotope i (for control samples).

Relative standard deviation for elements

<= 0.3 if content of these elements <= 5\*DL

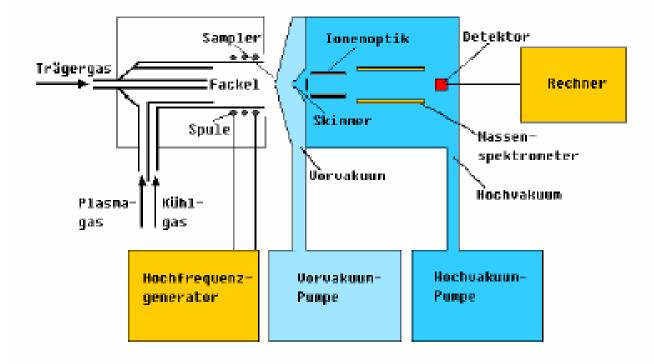
and <= 0.15, if  $C_{Me} > 5*DL$ 

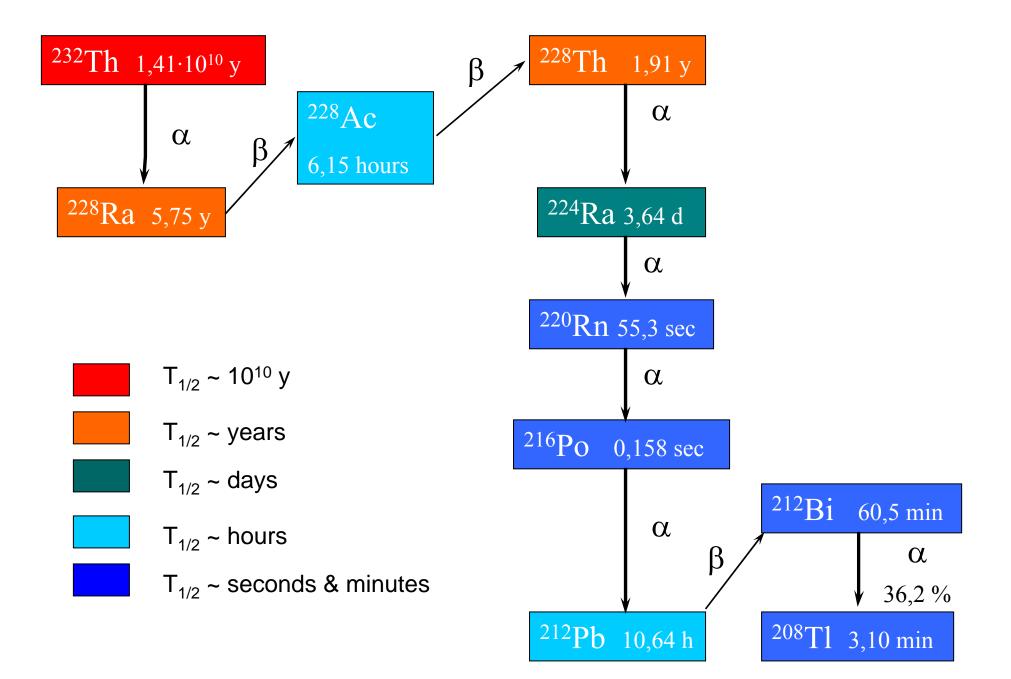
**Ringberg castle** 

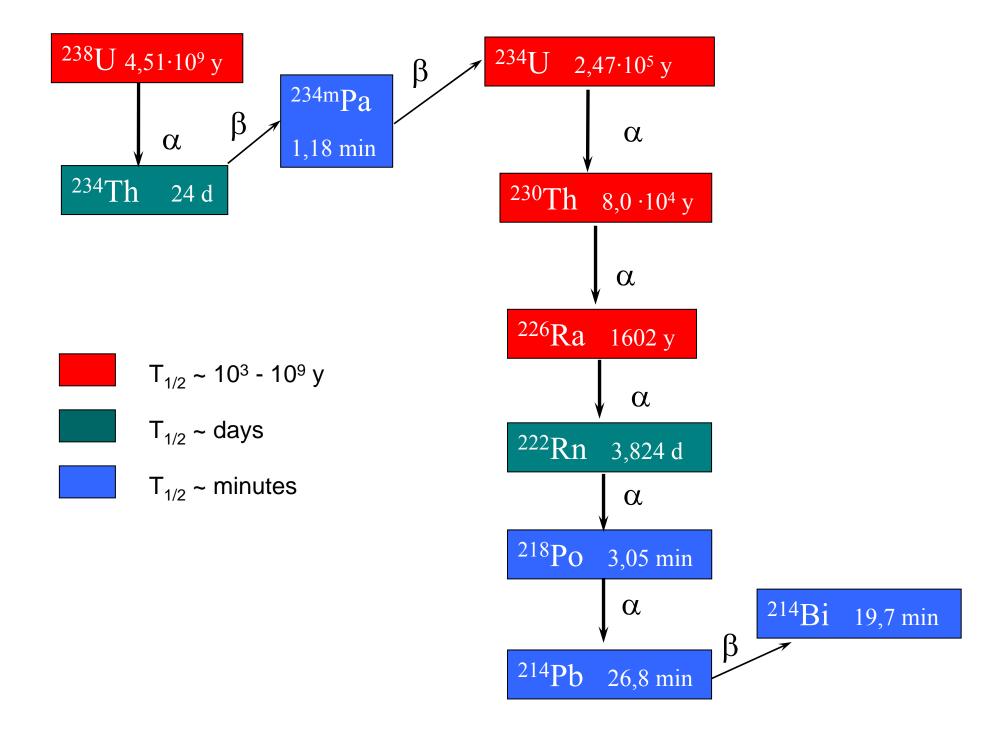
ββ

GERDA

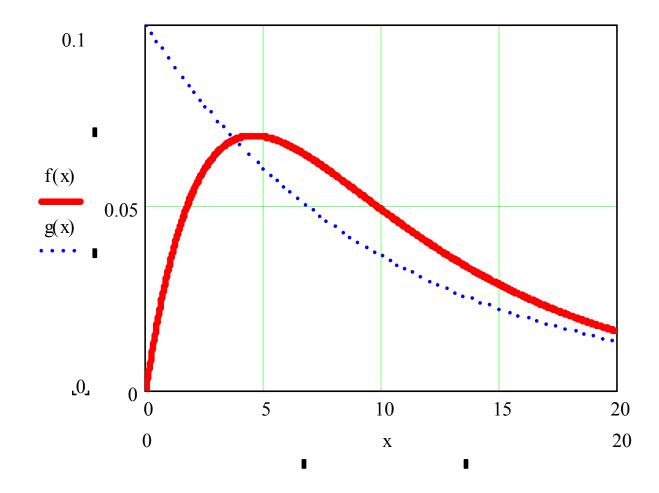
12 – 14 of February 2007


ICP MS measurements ss steel type 1.4571


| Sample E                              | lement | Content                              | Activity     |                     |  |
|---------------------------------------|--------|--------------------------------------|--------------|---------------------|--|
|                                       |        | in sample                            | Th-232       | Ra228/Th228         |  |
|                                       |        | g/g                                  |              | mBq/kg (HPGe)       |  |
| 1 494257                              | U      | $\leq$ 4,0 $\cdot$ 10 <sup>-10</sup> |              |                     |  |
|                                       | Th     | ≤ <b>5,0 · 10</b> <sup>-10</sup>     | ≤ <b>2,0</b> | < 0, 86/0,11        |  |
| 2 493553                              | U      | $\leq$ 1,2 $\cdot$ 10 <sup>-9</sup>  |              |                     |  |
|                                       | Th     | ≤ <b>5,0 · 10</b> <sup>-10</sup>     | ≤ <b>2,0</b> | <u>&lt;3,3/=1,1</u> |  |
| 3 254533                              | U      | ≤ 1,5 · 10 <sup>-9</sup>             |              |                     |  |
|                                       | Th     | ≤ <b>5,0 · 10</b> <sup>-10</sup>     | ≤ <b>2,0</b> | = 1,0/1,5           |  |
| 4 255455                              | U      | $\leq$ 5,0 $\cdot$ 10 <sup>-10</sup> |              |                     |  |
|                                       | Th     | ≤ <b>7,0 · 10</b> <sup>-10</sup>     | ≤ <b>2,8</b> | <3,0/=5,1           |  |
| 5 50609522                            | U      | $\leq$ 4,0 $\cdot$ 10 <sup>-10</sup> |              |                     |  |
|                                       | Th     | ≤ <b>5,0 · 10</b> <sup>-10</sup>     | ≤ <b>2,0</b> | <1,0/0,41           |  |
| 6 charge                              | U      | $\leq$ 1,9 $\cdot$ 10 <sup>-9</sup>  |              |                     |  |
| #5991                                 | Th     | ≤ 1,2 · 10 <sup>-9</sup>             | ≤ <b>4,8</b> | <u>&lt;2,9/=5,1</u> |  |
| #1 (LNGS)                             | U      | $\leq$ 4,0 $\cdot$ 10 <sup>-10</sup> |              |                     |  |
| , , , , , , , , , , , , , , , , , , , | Th     | ≤ <b>3,0 · 10</b> <sup>-10</sup>     | ≤ <b>1,2</b> | ?                   |  |
| #2 (LNGS)                             | U      | $\leq$ 4,0 $\cdot$ 10 <sup>-10</sup> |              |                     |  |
|                                       | Th     | ≤ <b>3,0 · 10</b> <sup>-10</sup>     | ≤ <b>1,2</b> | ?                   |  |




- 1. Eight samples of ss steel type 1.4571 were measured with X7 ICP MS (six of them were re-measured).
- 2. DL (Th232) for last 2 samples is  $1,2 \text{ mBq/kg} \rightarrow \text{good}$
- 3. Content of Th-232 was defined at level of <= 1.2 - 4.8 mBq/kg (limit).
- 4. Such a level of Th-232 requires application of internal Cu passive shielding with modest thickness (in the cryostat design).
- 5. In 2007, AC IPTM-HPM RAS will start measurements with new set up: ELEMENT2 ICP MS (from Bremen).














Milano

13 – 15 of November 2006



### GERDA ICP MS measurements ss steel type 1.4571

| Sample     | Element | Concentration Content | t Activity                     |               |                     |  |
|------------|---------|-----------------------|--------------------------------|---------------|---------------------|--|
|            |         | in solution           | in sample                      | Th-232 R      | a228/Th228          |  |
|            |         | μ <b>g/L</b>          | g/g                            | mBq/kg (HPGe) |                     |  |
| 1 494257   | U       | 0,000826              | 5,1 · 10 <sup>-10</sup>        |               |                     |  |
|            | Th      | 0,001651              | 1,0 · 10 <sup>-9</sup>         | <4,0          | < 0, 86/0,11        |  |
| 2 493553   | U       | 0,001788              | 1,2 · 10 <sup>-9</sup>         |               |                     |  |
|            | Th      | 0,001319              | 8,5 · 10 <sup>-10</sup>        | < 3,4         | <u>&lt;3,3/=1,1</u> |  |
|            |         |                       |                                |               |                     |  |
| 3 254533   | U       | 0,001354              | 1,0 · 10 <sup>-9</sup>         |               |                     |  |
|            | Th      | 0,001485              | 9,5 · 10 <sup>-10</sup>        | < 3,8         | = 1,0/1,5           |  |
| 4 255455   | U       | 0,000423              | 2,9 · 10 <sup>-10</sup>        |               |                     |  |
|            | Th      | 0,001230              | <b>8,3</b> · 10 <sup>-10</sup> | < 3,3         | <3,0/=5,1           |  |
| 5 50609522 | U       | 0,000590              | <b>3,9 · 10</b> ⁻¹⁰            |               |                     |  |
|            | Th      | 0,001192              | 8,0 · 10 <sup>-10</sup>        | < 3,2         | <1,0/0,41           |  |
| 6 charge   | U       | 0,002035              | 1,5 · 10 <sup>-9</sup>         |               |                     |  |
| #5991      | Th      | 0,000836              | 6,1 · 10 <sup>-10</sup>        | < 2,4         | <u>&lt;2,9/=5,1</u> |  |