TG 11 Overview Material screening

Hardy Simgen

Max-Planck-Institut für Kernphysik Heidelberg

Outline

- New Ge spectrometers
- Material selection for the cryostat
- Cables
- Intercomparison activities
- Status of the Rn monitor
- Design of Ar purification plant

New Ge spectrometers

- HADES: 2 detector setup
 → Talk of Mikael Hult
- MPIK: Corrado
 - \rightarrow Talk of Mark Heisel

(Diploma thesis Werner Maneschg)

• LNGS: GeMPI 3

 \rightarrow Talk of Mark Heisel

 No γ-screening measurements for some months @ MPIK due to renovation works!

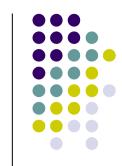
Material selection for cryostat

- Gamma activity measurements of stainless steel successfully finished
 - Missing batch for cylindrical part found
 - Discussion of results \rightarrow Talk of Gerd Heusser
 - ICPMS results \rightarrow Talk by V. Kornoukhov
- Welding rods and wires selected
 - 1 sample had high ⁴⁰K (200 mBq/kg), No improvement by acetone cleaning ⇒ replaced!
 - 1 sample with high ⁶⁰Co (~130 mBq/kg), Cleaning improved only ⁴⁰K ⇒ Anyhow used (Low mass)

The cable issue

- Clean cables not yet discovered
- Best choice: Kapton cable (²²⁶Ra: 9±6 mBq/kg)
 ²²⁸Th: <4 mBq/kg)
- Alternatives: PEN, Cuflon, ...

PEN	²³² Th	²³⁸ U	⁴⁰ K	
screening	Activity [mBq/kg]			
ICPMS	< 0.07	< 0.2	< 12	small sample
GeMPI		< 590	640 ± 50	
²²⁸ Ra	150 ± 10			
²²⁸ Th	150 ± 10			\rangle 4.4 kg sample
235U		< 590		
²²⁶ Ra		290 ± 10		J


Recent results for Kapton and PEN (ICPMS / Gamma)

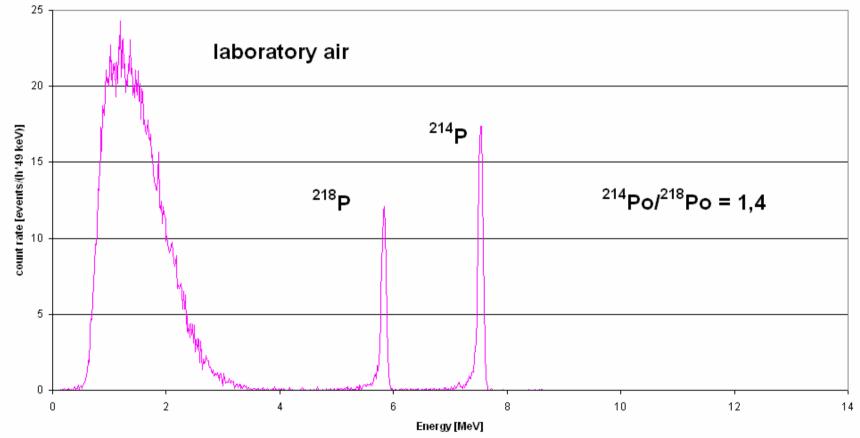
spec. Act.	²³² Th	²³⁸ U	⁴⁰ K
[mBq/kg]	(²²⁸ Th)	(²²⁶ Ra)	(⁴⁰ K)
Kapton	0.6 ± 0.2	12 ± 4	9 ± 2
	(< 25)	(< 40)	(140 ± 30)
PEN	100 ± 30	160 ± 50	170 ± 50
	(150 \pm 10)	(290 ± 10)	(640 ± 50)

Results from the NPL intercomparison exercise

- 4 GERDA labs participated
- Good agreement for IRMM / LNGS
- ~20% deviation for MPIK / Dubna (Baksan)

Further intercomparison activites

- MC code intercomparison exercise conducted by ICRM (International Committee for Radionuclide Metrology)
 - Differences between different (version of) codes analyzed
 - \rightarrow Talk of Dusan Budjáš during MaGe workshop
- Preparation of high density reference standards



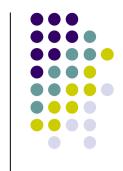
Jürgen Kiko, Jochen Schreiner MPIK HD

Spectrum of collected Rn-daughters

Radon-Monitor GERDA working with 35 kV

Jürgen Kiko, Jochen Schreiner MPIK HD

Next steps


- Purification of the inner vessel
- Calibration with a Rn source
- Modifications of the insulator setup for higher collection voltage
- Electronic improvements for background reduction

²²²Rn in Ar: What do we know?

- Measured initial ²²²Rn concentrations in Ar:
 - Ar 5.0: (8.4 ± 0.2) mBq/m³ (STP)
 - Ar 6.0: (0.38 ± 0.02) mBq/m³ (STP)
- ²²²Rn decays (3.8 days half-life)
 - \Rightarrow Final concentration depends on ²²²Rn emanation-rate of storage tank
- Example: Ar 5.0 (LNGS): <0.02 mBq/m³ (STP)
- Initial activities rather high ⇒ Long times for ²²²Rn decay required (not practical)

Strategy for getting pure LAr in GERDA (Proposal)

- 1st filling without purification
 - ²²²Rn decays inside cryostat
- LAr refilling necessary from time to time to replace evaporation losses
- Regular ²²²Rn spikes must be avoided ⇒ High purity of refilled LAr is crucial
- Purification plant needed:
 - Concept: Cryo-Adsorption on charcoal
 - Reduction of ²²²Rn by factor 500 for ~200 liters LAr

Achieved ²²²Rn reductions

Quality	Sample size (STP)	Mass of charcoal	Reduction factor	Phase
Ar 4.6	141 m ³	150 g	> 400	Gas
Ar 5.0	200 m ³	60 g	10	Liquid
Ar 6.0	104 m ³	60 g	18	Liquid

- Liquid phase adsorption less efficient
- Size of column (charcoal mass) to be determined
- Design studies will be performed soon @ MPIK
- Initially pure argon crucial to keep column size moderate