GERDA STATUS REPORT SEARCH OF ⁷⁶GE Ονββ DECAY

Carla Maria Cattadori INFN Milano Bicocca on behalf of GERDA collaboration

TAUP 2011- Munich

Outline

GERDA

- Setup
- Sensitivity
- Results from the first year of data taking
 - Results on ⁴²Ar
 - Background from Th,U,K,Co
 - The spectrum of ⁷⁶Ge $2\nu\beta\beta$
 - Plans for forthcoming operations
- Status of Phase II preparation
 - Detectors
 - LAr instrumentation
- Conclusions

GERD

The Collaboration

~ 95 physicists 17 institutions 7 countries (Germany, Italy, Russia, Poland,Belgium,Switzerland, China)

> GERDA collaboration picture, GERDA meeting; Zurich- June 2011

C.M. Cattadori – TAUP 2011

The GERDA setup

clean room

Lock to insert detectors

GERDA bldg

GERDA: Sensitivity

GERDA I: scrutinize in ~ 1 year data taking (assuming 18 kg y exposure) the KK claim: if true $\beta\beta$ decay GERDA will have 7 cts, above bckg of 0.5 cts \rightarrow probability that bckg simulate signal ~ 10⁻⁵

Bologna, 20th September 2010

GERDA milestones

- Proposed, funded, designed, constructed: 2005-2010
- June 2010: start of commissioning runs with one string of 3 ^{nat}Ge detectors (7.6 kg) to investigate the setup background.
- June 2010- June 2011: investigated
 - background sources \rightarrow ⁴²Ar- ⁴²K
 - the ⁴²Ar background mitigation strategies
- June 2011: deployed the first string of enrGe (6.7 kg) detectors, in the best configuration found so far, while continuing the data taking with ^{nat}Ge detector strings on the second string arm

Gerda

The GERmanium Detector Array for the search of neutrinoless $\beta\beta$ decays of ⁷⁶Ge at LNGS

Proposal

C.M. Cattadori - TAUP

Background at $Q_{\beta\beta}$ by: β , bremsstrahlung from β and 2424 keV γ -ray

- T_{1/2} = 12.36 h
- Q = 3525.4 keV
- Mostly a pure β emitter
 - Most intense γ ray at 1524.73 keV (18.1%)

The expected ⁴²Ar background

- 42Ar production: ⁴⁰Ar(α,2p)⁴²Ar reaction in atmosphere and fall-out from atmospheric nuclear explosions
- □ ⁴²Ar concentration: measured < 40-60 μ Bq/l → < 0.1 cts/(kg day) in GERDA geometry, for an homogeneous distribution around the detectors.

⁴²K total spectrum (3 detectors) for ⁴²Ar/⁴⁰Ar=4.3 10⁻²¹ g/g

 From ⁴²K β decay in the detector borehole or @ Li layer

GER

• Hard bremssthralung of > 2 MeV β s in LAr

Results on ⁴²Ar-⁴²K from the first year of data taking

In the first run

 $|_{1524}$ meas > 20 $|_{1524}$ expected

Soon we understood that ⁴²K, generated positively charged by the ⁴²Ar β decay:

E[V/m] 1.0000e+005 9.7082e+004 9.4165e+004 9.1247e+004 8.8329e+004 8.5412e+004 8.2494e+004 7.9576e+004 7.6659e+004 7.3741e+004 7.0824e+004 6.7906e+004 6.4988e+004 6.2071e+004 5.9153e+004 5.6235e+004 5.3318e+004 5.0400e+004 4.7482e+004 4.4565e+004 4.1647e+004 3.8729e+004 3.5812e+004 3.2894e+004 2.9976e+004 2.7059e+004 2.4141e+004 2.1224e+004 1.8306e+004 1.5388e+004 1.2471e+004 9.5529e+003 6.6353e+003 3.7176e+003 3.0000e+002

can be drifted by moderate E_{field} as the ones dispersed in LAr by the diodes bias

□ The starting ⁴²K homogeneous distribution changes to a new one \rightarrow enhancement / reduction of cts rate @ the γ -line.

□ While drifting or when reaching metallic surfaces it can be neutralized (τ_{neutr} 20 - 40 min), and/or decay (τ_{decay} 12 h).

 \Box The ⁴²K β decay at the detector surface (mainly in borehole) gives events at the Q_{BB}

The Mini-Shroud

Deployed a Cu shield called minishroud (MS) to

Physically separate the LAr bath in two volumes: the smallest (3 I) surrounding the detectors, and the largest, outside it.

Prevent that the dispersed E_{field} pumps ions from the largest fraction of the LAr bath (an infinite ⁴²K reservoir)

Prevent that the sucked ions reach the detector surfaces

<u>History ofCount rate at the 1525 keV y-line</u>

S= outer shroud (diameter 760 mm), M = mini-shroud (diameter 115 mm)

History of count rate at $Q_{\beta\beta}$ in ^{nat}Ge detectors (1839 keV - 2239 keV)

TAUP 2011- Munich

RDA

Background from other isotopes in the ^{nat}Ge Conservative estimate

(not from best runs)

Rate @2614 keV= 4.83 cts/(kg y)

Extimated cts rate @ $Q_{\beta\beta}$ = 2.2 10⁻² cts/(kg KeV y)

HdM bckgrd Rate@2614 keV=26 cts/(kg y)

2900					
(keV)	energy	I_{HdM}	[cnts]	I_G	R
	[keV]	original	normalized	[cnts]	
^{40}K	1460.8	13010 ± 134	287 ± 3	$14.6~\pm~5.8$	$19.7~\pm~7.9$
^{60}Co	1173.2	$3955~\pm~88$	87 ± 2	$12.8~\pm~5.8$	6.8 ± 3.1
	1332.3	$3690~\pm~90$	81 ± 2	< 7.9	> 10
^{137}Cs	661.6	$20201~\pm~164$	$445~\pm~4$	$<\!\!2.5$	> 180
^{208}Tl	583.1	$2566~\pm~228$	57 ± 5	$9.9~\pm~5.8$	5.7 ± 3.4
	2614.5	$1184~\pm~36$	26 ± 1	$7.0 \stackrel{+3.8}{-2.6}$	$3.7 \stackrel{+2.0}{_{-1.4}}$
^{214}Bi	609.3	$7552~\pm~96$	$167~\pm~2$	36.7 ± 8.1	4.6 ± 0.8
	1120.3	$1926~\pm~86$	$43~\pm~2$	$12.2\ \pm 5.5$	3.5 ± 1.6
	1764.5	$2204~\pm~51$	49 ± 1	$7.0 \ {}^{+3.8}_{-2.6}$	$6.9 \ ^{+3.8}_{-2.6}$
^{228}Ac	910.8	$2135~\pm~115$	47 ± 3	<7.7	> 6
	968.9	1259 ± 82	28 ± 2	$<\!\!6.4$	> 4.8

Ratio (R) of the bckgrd in GERDA (G) and in previous HdM experiment. HdM data.

NEW: First spectrum of $2\nu\beta\beta$ decay from the ^{enr}Ge string data taking (Run 15)

Ongoing and forthcoming activities

- Measurement in a field free configuration of GERD [⁴²Ar] with ^{nat}Ge
- Long term background measurement with ^{enr}Ge

Present schedule

- Commissioning runs will end in autumn.
- By end of 2011: deploy all the ^{enr}Ge detectors in the 3 string arm
- Start Phase I data taking

Preparation of GERDA PHASE II: choice of detectors allowing enhanced PSD.

P-type thick window BEGe detector (80 x 40 mm) tested naked in Lar with cold front-end

The GERDA Phase II detector baseline is the Broad-Energy Germanium (BEGe) detector. The small size of its signal electrode results in :

 Low capacitance → high energy resolution. En Res 1.6 keV @ 1.332 MeV

Preparation of GERDA PHASE II: BEGe detectors with enhanced PSD.

- Increased field near electrode → improved S/bckgrd rejection capability by ID event topologies
- □ Pulse Shape cuts accepting 90% of ²³²Th DEP (mostly Single Site Events $\rightarrow 0\nu\beta\beta$ -like)
 - ~10% survival of the γ -line ²¹²Bi line (mostly Multi-Site Events $\rightarrow \gamma$ -like)

The deplBEGe production

In years 2009-2010 performed a pilot production of BEGe diodes starting from deplGe of same origin and processing history of the ^{enr}Ge.

deplGeO

Test a modified production process aiming to improve the production mass efficiency of working detectors vs input Ge material

crystal slice

in vacuum cryostat

□ 3 ^{nat}Ge + 4 (5) deplGe BEGe detectors tested so far in vacuum cryostat: all show excellent resolution (1.6 keV @ 1332 keV) and Pulse Shape discrimination performances

The preparation of GERDA Phase II: ^{enr}Ge processing and diodes production

ion BB GERDA

- \checkmark 36.6 kg >50 Ohm material produced.
- 97% of the 37.5 kg available ^{enr}Ge is now 6N material. The integrated CR exposure: 5.2 days
- All the material is stocked underground ready to be sent to our industrial partner
- Contract with the industrial partner to grow ^{enr}Ge crystals & produce BEGe diodes following the process of deplBEGe: signed
- Current schedule: Phase II detector produced and tested by summer 2013

LAr instrumentation

□ LAr readout is a powerful tool to further reduce background, (condition: should not introduce new bckgrd sources).

- Measured suppression factor at Q_{ββ}: ~0.5-10⁴ for a ²²⁸Th calibration source
- Triplet halflife in GERDA has been recently measured to be 920 ns ± 20: the lock and glove box system work very well in GERDA.
 look at M. Heisel poster (P27) in Poster session
- □ After 1 y of operation the LAr purity is preserved.
- Work in progress to implement the LAr readout the by new low background PMTs (Hamamatsu, few mBq Th) or by SiPM/APD coupled with fibers, or direct readout sticked @ MS wall

Conclusions & Outlook Phase I

GERDA is taking data since june 2010. All the parts of the setup works well and allows a smooth data taking

Phase I Detectors perform satisfactory:

- Leakage current< 50 pA independent on length and number of calibrations
- Energy resolution @ 2.614 keV 208TI: 3.6 keV ÷ 6.0 keV

Background:

- Encountered ⁴²Ar ⁴²K unexpected intensity. The ⁴²K β–γ decay is responsible for background < 2.0 MeV (1524 keV γ–line), and > 2.0 MeV if the ⁴²K β-decay happens in the borehole or at surface
- ⁴²K is produced charged and we learned how to move it in the LAr by applying Efield
- Background from Th and U is much lower (~ 1/4) than in previous experiments (HdM & IGEX): GERDA technique validated.

Conclusions & Outlook Phase I

The background of the ^{nat}Ge string i@ Q_{ββ} (1839- 2239 keV range) GERD 0.06 ± 0.02 cts/(kg·keV·y)

Most likely from a combination of Compton continuum from Th/U, residual 42 K, degraded α , bckgrd from cosmogenic isotopes

- In June 2011 deployed first string of ^{enr}Ge in the best electrostatic and shielding configuration found so far
 - 2vββ spectrum well visible in an exposure of 107 kg·y (=6.6 kg·16 d) of ^{enr}Ge detectors: Spectrum well reproduced by overlapping of ³⁹Ar, 2vββ ⁷⁶Ge, ⁴²Ar
 - Indications of background improvement: In ^{enr}Ge run @ Q_{ββ} < 0.06 cts/(kg·keV·y) @ 90% CL
 Needs confirmation (more statistics).

By end of 2011 all the 8 enrGe Phase I detectors will be deployed. TAUP 2011- Munich

Conclusions & Outlook Phase II

- Phase II in advanced Phase of preparation.
- Tools to enhance the S/Background prove to work
 - BEGe detector with enhanced PSD feature to recognize event topology
 - Veto of external γs and internal cosmogenic isotopes (⁶⁸Ge,⁶⁰Co...) by LAr scintillation light works: LAr readout with PMTs successfull (LARGe), test with SiPM with/wo optical fibers ongoing.
 - Triplet half-life of LAr scintillation light measured in GERDA setup (no purification) 920 ns.