Status of the GERDA experiment at LNGS and results from the ongoing commissioning phase

Neutrino Telescope 15.-18.3.2011

Stefan Schönert (TUM) on behalf of the GERDA collaboration GERDA publications: http://www.mpi-hd.mpg.de/GERDA

~ 100 members 19 institutions 6 countries

^a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Asse ^b) Institute of Physics, Jagellonian University, Cracow, ^c) Institut für Kern- und Teilchenphysik, Technische Universität Dresde ^d) Joint Institute for Nuclear Research, Dubna, Rus ^e) Institute for Reference Materials and Measurements, Gee ^f) Max Planck Institut für Kernphysik, Heidelberg, Ger ^g) Dipartimento di Fisica, Università Milano Bicocca, Mila ^h) INFN Milano Bicocca, Milano, Italy ⁱ) Dipartimento di Fisica, Università degli Studi di Milano e INFN M ^j) Institute for Nuclear Research of the Russian Academy of Science ^k) Institute for Theoretical and Experimental Physics, Mosc ¹) Russian Research Center Kurchatov Institute, Moscow ^m) Max-Planck-Institut f
ür Physik, M
ünchen, Germa ⁿ) Physik Department E15, Technische Universität München ^o) Dipartimento di Fisica dell'Università di Padova, Pado ^p) INFN Padova, Padova, Italy ^q) Shanghai Jiaotong University, Shanghai, China ^r) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany ^s) Physik Institut der Universität Zürich, Zürich, Switzerland

M. Agostiniⁿ, M. Allardt^c, E. Andreotti^e, A.M. Bakalvarov^l, M. Balata^a, I. Barabanov^j, M. Barnabe-Heider^f, L. Baudis^s, C. Bauer^f, N. Becerici-Schmid^m, E. Bellotti g,h, S. Belogurov k,j , S.T. Belyaev l , G. Benato o,p , A. Bettini o,p , L. Bezrukov j , T. Bruch^s, V. Brudanin^d, R. Brugnera^{o,p}, D. Budjasⁿ, A. Caldwell^m, C. Cattadori^{g,h} F. Cossavella^m, E.V. Demidova^k, A. Denisov^j, S. Dinter^m, A. Domula^c, V. Egorov^d, F. Faulstich^m, A. Ferella^s, K. Freund^r, F. Froborg^s, N. Frodyma^b, A. Gangapshev^j, A. Garfagnini^{o,p}, S. Gazzana^{l,d}, P. Grabmayr^r, V. Gurentsov^j, K.N. Gusev^{l,d}, W. Hampel^f, A. Hegai^r, M. Heisel^f, S. Hemmer^{o,p}, G. Heusser^f, W. Hofmann^f, M. Hult^e, L. Ianucci^a, L.V. Inzhechik^j, J. Janicskoⁿ, J. Jochum^r, M. Junker^a S. Kianovsky^j, I.V. Kirpichnikov^k, A. Kirsch^f, A. Klimenko^{d,j}, K-T. Knoepfle^f, O. Kochetov^d, V.N. Kornoukhov^{k,j}, V. Kusminov^j, M. Laubenstein^a, V.I. Lebedev^l B. Lehnert^c, S. Lindemann^f, M. Lindner^f, X. Liu^q, A. Lubashevskiy^f, B. Lubsandorzhiev^j, A.A. Machado^f, B. Majorovits^m, G. Maissens^e, G. Meierhofer^r. I. Nemchenok^d, S. Nisi^a, C. O'Shaughnessy^m, L. Pandola^a, K. Pelczar^b, F. Potenza^a. A. Pullia^{*i*}, M. Reissfelder^{*f*}, S. Riboldi^{*i*}, F. Ritter^{*r*}, C. Sada^{*o,p*}, J. Schreiner^{*f*}, U. Schwan^f, B. Schwingenheuer^f, S. Schönertⁿ, H. Seitz^m, M. Shirchenko^{l,d}, H. Simgen^f, A. Smolnikov^f, L. Stanco^p, F. Stelzer^m, H. Strecker^f, M. Tarka^s. A.V. Tikhomirov¹, C.A. Ur^p, A.A. Vasenko^k, O. Volynets^m, M. Wojcik^b, E. Yanovich^j, P. Zavarise^{*a*}, S.V. Zhukov^{*l*}, D. Zinatulina^{*d*}, F. Zocca^{*i*}, K. Zuber^{*c*}, and G. Zuzel^{*b*}.

Characteristics of $~^{76}Ge$ for $0\nu\beta\beta$ search

- **Favorable nuclear matrix** element $|M^{0v}|=3-9$
- Reasonable slow $2\nu\beta\beta$ rate (T_{1/2} = 1.4×10^{21} y) and high Q_{$\beta\beta$} value (2039 keV)
- Ge as source and detector
- Elemental Ge maximizes the source-to-total mass ratio
- Industrial techniques and facilities available to enrich from 7% to ~86%
- Intrinsic high-purity Ge diodes & HP-Ge detector technologies well established
- Excellent energy resolution: FWHM ~3 keV at 2039 keV (0.16%)
- Powerful signal identification & background rejection possible with novel detector concepts:
 - time structure of charge signal (PSA) using **BEGe detectors**
 - granularity
 - liquid argon scintillation as active veto system
- Best limits on $0\nu\beta\beta$ decay used Ge (IGEX & Heidelberg-Moscow) T_{1/2} > 1.9 × 10²⁵ y (90%CL) [& claim for evidence]

Phases and physics reach

Background requirement for GERDA/Majorana:

⇒Background reduction by factor $10^2 - 10^3$ required w.r. to precursor exps. ⇒Degenerate mass scale $O(10^2 \text{ kg} \cdot \text{y}) \Rightarrow$ Inverted mass scale $O(10^3 \text{ kg} \cdot \text{y})$

Two new ⁷⁶Ge Projects:

'Bare' enrGe array in liquid argon
Shield: high-purity liquid Argon / H₂O
Phase I: 18 kg (HdM/IGEX) / 15 kg nat.
Phase II: add ~20 kg new enr. Detectors; total ~40 kg

Array(s) of ^{enr}Ge housed in high-purity electroformed copper cryostat
Shield: electroformed copper / lead

•Initial phase: R&D demonstrator module: Total ~60 kg (30 kg enr.)

Physics goals: degenerate mass range Technology: study of bgds. and exp. techniques

open exchange of knowledge & technologies (e.g. MaGe MC)
 intention to merge for O(1 ton) exp. (inv. Hierarchy) selecting the best technologies tested in GERDA and Majorana

Unloading of vacuum cryostat (6 March 08)

10

Produced from selected low-background austenitic steel

Designed for external γ ,n, μ background ~10⁻⁴ cts/(keV kg y)

Ø 10 m H = 9.5 m V = 650 m³

construction of clean room

Glove-box for Ge-detector handling and mounting into commissioning lock under N₂ atmosphere installed in clean room

LEOD

 Nov/Dec.'09: Liquid argon fill

• Jan '10: Commissioning of cryogenic system

• Apr/Mai '10: emergency drainage tests of water tank

• Apr/Mai '10: Installation c-lock

• May '10: 1st deployment of FE&detector mock-up (27 pF) - pulser resolution 1.4 keV (FWHM); first deployment of nonenriched detector

• June '10: Start of commissioning run with ^{nat}Ge detector string

• **Soon**: start of Phase I physics data taking

Results from commissioning run 12: Muon induced events in Ge detectors

The unexpected ⁴²Ar (⁴²K) Signal

GERDA proposal: ⁴²Ar/^{nat}Ar <3-10⁻²¹

[Barabash et al. 2002]

• True value could be x10 higher than limit;

- Additional enhancement of count rate due to collection of ⁴²K ions by E-field of diodes
- If ^{42}K decay on detector surface \Rightarrow bgd to $0\nu\beta\beta$

Enhancement of ⁴²K(⁴²Ar) count rate by Efield of detectors: 1525 keV peak

+HV on n+ contact (w/o mini-shroud)

Enhancement of ⁴²K(⁴²Ar) count rate by Efield of detectors: high-energy region

Enhancement of ⁴²K(⁴²Ar) count rate by Efield of detectors: high-energy region

Enhancement of ⁴²K(⁴²Ar) count rate by Efield of detectors: high-energy region

Summary of commissioning runs with nonenriched detectors

Counting rate of the 1525 keV ⁴²K (⁴²Ar) line

Summary of commissioning runs with **non**enriched detectors: background indices (derived in Q_{ββ}±200 keV)

Results from commissioning run 12: The low-energy spectrum: ³⁹Ar

Results from commissioning run 12: Event distribution: energy vs. time

Results from commissioning run 12: Count rate in Region of Interest

experiments (HdM, IGEX), but still higher than Phase I bgd-goal (ie. 0.01 cnts/(keV·kg·year))

- likely: cosmogenic bgd contribution because of exposure historly of crystals
- Run13: "field-free" (ie. n+ contact @ 0V) & removal of mini-shroud
- Deployment of 3 enriched detectors known (low) activation history

Phase II detectors

S. Schönert, Neutrino Telescope, 15-18.3.2011

1000

500

0

Time after trigger [ns]

1500

-500

S. Schönert, Neutrino Telescope, 15-18.3.2011

After successful test of production production chain with ^{depl}Ge:

- 37.5 kg of 86% enrGe (in form of GeO2) purified to 35.4 kg (94%) of 6N (+ 1.1 kg tail = 97%);
- crystal pulling and detector fabrication under preparation

R&D liquid argon instrumentation

lock for Ge-detector deployment

copper cryostat inner $\emptyset = 90$ cm, height = 205 cm LAr volume = 1 m³ (1.4 t) coated with WLS mirror foil

PMTs 9× 8" ETL 9357 coated with WLS

detector strings

graded shield

15 cm copper 10 cm lead 23 cm steel 20 cm polyethylene

Low background GERDA-LArGe test facility @ LNGS: Detection of coincident liquid argon scintillation light to discriminate background

R&D liquid argon instrumentation

Operation of Phase II detector prototype in LArGe: **Measured** suppression factor at $Q_{\beta\beta}$: ~0.5-10⁴ for a ²²⁸Th calibration source Also: successful read out scintillation light with fibers coupled to SiPMs

- GERDA experimental installations completed successfully; cryogenic and auxiliary systems operate very stable
- Detector commissioning with non-enriched detectors started summer 2010 and is still ongoing
- Initial count rate (run 1-3,5) dominated by ⁴²K (⁴²Ar progenitor) due to concentration of ⁴²K close to the detectors by E-field of diodes ⇒ field-free configuration
- **12 commissioning runs** with different detectors, read-out schemes, E-field configurations completed successfully
- Background with non-enriched detectors currently at 0.05 cts/(keV kg year). Goal for Phase I: 0.01 cts/(keV kg year).
- Deployment of first string(s) with enriched detectors
 Phase I soon to study background with enriched detectors
 ⇒ start of Phase I physics run

Conclusions & Outlook (cont.)

- Thick-window **p-type BEGe** detectors for **Phase II**
- Powerful particle ID and background discrimination by pulse shape analysis: MSE/SSE, p+ contact (α) and n+ (β) surface events
- Full production chain tested for BEGe Phase II detectors
- 37.5 kg of 86% ^{enr}Ge (in form of GeO2) successfully transformed to 35.4 kg (94%) of 6N
- Crystal pulling and detector production under preparation
- Liquid argon instrumentation shown in GERDA-LArGe test stand to be a powerful method to discriminate backgrounds: implementation in GERDA if needed

Extra slides

Figure 5.6: Close-up of the energy region around the 1525 keV ⁴²K-peak. None of the 7 counts in the peak (1523-1527 keV) survives the LAr veto cut. The peak at 1460 keV is from ⁴⁰K.

Figure 5.7: The LArGe background in the ROI of the $0\nu\beta\beta$ -decay. In the vetoed spectrum (yellow) only one count is present in a 300 keV interval around $Q_{\beta\beta} = 2039$ keV, and no count in a 100 keV interval. A ²¹⁴Bi peak appears at 2204 keV. The exposure is 116 kg·d (47.05 days).

no Telescope, 15-18.3.2011

Run 1-3 with 2 keV bins

Spectrum before mini-shroud, unscaled, 2 keV/bin

Results from run 12: Alpha candidate events

Phase I detectors

p-type coaxial detectors

Bare Ge-diode

Low-mass holder

Detector handling under N₂ atmosphere

8 diodes (from HdM, IGEX):

- Enriched 86% in ⁷⁶Ge
- All diodes refurbished with new contacts optimized for LAr
- Energy resolution in LAr:
- ~2.5 keV (FWHM) @1.3 MeV
- Well tested procedure for detector handling
- Total mass 17.66 kg (after refurbishing)

<u>6 diodes from Genius-TF natGe:</u>

- Same refurbishing & testing as enriched diodes
- Total mass: 15.60 kg

Background in Heidelberg-Moscow Experiment

Figure 3.14: Fits of the HdM spectrum for three energy windows: 2000-2060 keV, 1990-2070 keV and 1980-2080 keV. The spectrum is fitted with fixed peak positions [28] and fixed peak widths (3.48 keV FWHM) defined by the energy calibration. The fitted background depends on the energy interval.

O. Chkvorets, Diss. Univ. Heidelberg, 2008

Line	Energy window		
E, [keV]	$2000\text{-}2060~\mathrm{keV}$	$1990-2070 \mathrm{keV}$	$1980-2080 \mathrm{keV}$
2010	34.5 ± 8.2	31.5 ± 8.4	29.4 ± 8.7
2017	32.9 ± 8.2	30.0 ± 8.4	28.0 ± 8.6
2022	14.0 ± 8.2	11.0 ± 8.4	9.0 ± 8.7
2039	21.6 ± 8.3	18.5 ± 8.4	16.4 ± 8.7
2053	28.7 ± 8.3	25.6 ± 8.4	23.4 ± 8.7
B [counts/keV]	10.3 ± 0.6	10.9 ± 0.5	11.3 ± 0.4

Table 3.8: Intensities of the peaks in the region of interest around $Q_{\beta\beta}$ obtained from fit using different energy windows.

Background: 0.16 counts/(keV kg year)