

The GERDA Experiment: A Search for Neutrinoless Double Beta Decay

NPA5 Eilat 3.-8.5.2011

Matthias Junker (INFN — Laboratori Nazionali del Gran Sasso) on behalf of the GERDA collaboration GERDA publications: http://www.mpi-hd.mpg.de/GERDA

~ 100 members 19 institutions 6 countries

^a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy ^b) Institute of Physics, Jagellonian University, Cracow, Poland ^c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany ^d) Joint Institute for Nuclear Research, Dubna, Russia ^e) Institute for Reference Materials and Measurements, Geel, Belgium ^f) Max Planck Institut für Kernphysik, Heidelberg, Germany ^g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy ^h) INFN Milano Bicocca, Milano, Italy ⁱ) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy ^j) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ^k) Institute for Theoretical and Experimental Physics, Moscow, Russia ¹) Russian Research Center Kurchatov Institute, Moscow, Russia ^m) Max-Planck-Institut für Physik, München, Germany ⁿ) Physik Department E15, Technische Universität München, Germany ^o) Dipartimento di Fisica dell'Università di Padova, Padova, Italy ^p) INFN Padova, Padova, Italy ^q) Shanghai Jiaotong University, Shanghai, China ^r) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany ^s) Physik Institut der Universität Zürich, Zürich, Switzerland

M. Agostiniⁿ, M. Allardt^c, E. Andreotti^e, A.M. Bakalyarov^l, M. Balata^a, I. Barabanov^j, M. Barnabe-Heider^f, L. Baudis^s, C. Bauer^f, N. Becerici-Schmid^m. E. Bellotti^{g,h}, S. Belogurov^{k,j}, S.T. Belyaev^l, G. Benato^{o,p}, A. Bettini^{o,p}, L. Bezrukov^j T. Bruch^s, V. Brudanin^d, R. Brugnera^{o,p}, D. Budjasⁿ, A. Caldwell^m, C. Cattadori^{g,h}, F. Cossavella^m, E.V. Demidova^k, A. Denisov^j, S. Dinter^m, A. Domula^c, V. Egorov^d, F. Faulstich^m, A. Ferella^s, K. Freund^r, F. Froborg^s, N. Frodyma^b, A. Gangapshev^j, A. Garfagnini^{o,p}, S. Gazzana^{l,d}, P. Grabmayr^r, V. Gurentsov^j, K.N. Gusev^{l,d}, W. Hampel^f, A. Hegai^r, M. Heisel^f, S. Hemmer^{o,p}, G. Heusser^f, W. Hofmann^f, M. Hult^e, L. Ianucci^a, L.V. Inzhechik^j, J. Janicskoⁿ, J. Jochum^r, M. Junker^a S. Kianovsky^j, I.V. Kirpichnikov^k, A. Kirsch^f, A. Klimenko^{d,j}, K-T. Knoepfle^f, O. Kochetov^d, V.N. Kornoukhov^{k,j}, V. Kusminov^j, M. Laubenstein^a, V.I. Lebedev^l, B. Lehnert^c, S. Lindemann^f, M. Lindner^f, X. Liu^q, A. Lubashevskiy^f, B. Lubsandorzhiev^j, A.A. Machado^f, B. Majorovits^m, G. Marissens^e, G. Meierhofer^r, I. Nemchenok^d, S. Nisi^a, C. O'Shaughnessy^m, L. Pandola^a, K. Pelczar^b, F. Potenza^a, A. Pullia^{*i*}, M. Reissfelder^{*f*}, S. Riboldi^{*i*}, F. Ritter^{*r*}, C. Sada^{*o*,*p*}, J. Schreiner^{*f*}, U. Schwan^f, B. Schwingenheuer^f, S. Schönertⁿ, H. Seitz^m, M. Shirchenko^{l,d}, H. Simgen^f, A. Smolnikov^f, L. Stanco^p, F. Stelzer^m, H. Strecker^f, M. Tarka^s A.V. Tikhomirov¹, C.A. Ur^p, A.A. Vasenko^k, O. Volynets^m, M. Wojcik^b, E. Yanovich^j, P. Zavarise^{*a*}, S.V. Zhukov^{*l*}, D. Zinatulina^{*d*}, F. Zocca^{*i*}, K. Zuber^{*c*}, and G. Zuzel^{*b*}

The GERmanium Detector Array (GERDA) experiment is designed to search for neutrinoless double beta decay (0vββ). The observation would imply:

 $(v = \overline{v})$

 $(A,Z) \rightarrow (A,Z+2) + 2e$ -

- neutrino is a Majorana particle
- lepton number violation $\Delta L=2$
- effective neutrino mass
- determination of neutrino mass hierachy

Claim for evidence of $0\nu\beta\beta$ of 76 Ge in Heidelberg Moscow experiment

Data acquisition and analysis of the ⁷⁶Ge double beta experiment in Gran Sasso 1990–2003

H.V. Klapdor-Kleingrothaus*,1, A. Dietz, I.V. Krivosheina², O. Chkvorets

Fig. 17. The total sum spectrum of all five detectors (in total 10.96 kg enriched in ⁷⁶Ge), for the period November 1990–May 2003 (71.7 kg year) in the range 2000–2060 keV and its fit (see Section 3.2).

Matthias Junker, INEN - Laboratori Nazionali dei Gran Sasso

Nov 1990- May 2003
71.7 kg year
Bgd 0.11 / kg y keV
28.75 ± 6.87 events (bgd:~60)
4.2 sigma evidence for 0vββ

•0.34-2.03 x10²⁵ y (3 sigma) •Best fit 1.19 x10²⁵ y

•m_{ee} = 0.1-0.9 eV •best fit 0.44 eV

<u>Note:</u> statistical significance depends on background model!

Claim for evidence of $0\nu\beta\beta$ of 76 Ge in Heidelberg Moscow experiment

O. Chkvorets, Diss. Univ. Heidelberg, 2008

Figure 3.14: Fits of the HdM spectrum for three energy windows: 2000-2060 keV, 1990-2070 keV and 1980-2080 keV. The spectrum is fitted with fixed peak positions [28] and fixed peak widths (3.48 keV FWHM) defined by the energy calibration. The fitted background depends on the energy interval.

Red:KK NIM 522 (2004)Blue:Different background modelBlack:Different background model

Two new ⁷⁶Ge Projects:

•'Bare' enrGe array in liquid argon •Shield: high-purity liquid Argon / H₂O

Phase I: 18 kg (HdM/IGEX) / 15 kg nat.
Phase II: add ~20 kg new enr. Detectors; total ~40 kg

•Array(s) of ^{enr}Ge housed in high-purity electroformed copper cryostat

- •Shield: electroformed copper / lead
- Initial phase: R&D demonstrator module: Total ~60 kg (30 kg enr.)

Majorana

Physics goals: degenerate mass range Technology: study of bgds. and exp. techniques

open exchange of knowledge & technologies (e.g. MaGe MC)
intention to merge for O(1 ton) exp. (inv. Hierarchy) selecting the best technologies teste in GERDA and Majorana

Sensitivity of GERDA

NPA5, Eilat, 3 - 8 April 2011

Background reduction:

Deep underground site 3800 m.w.e.: suppression of cosmic ray muons by factor 10⁻⁶ & graded shielding against ambient radiation & rigorous material selection & signal analysis

GERDA @ LNGS, Italy

GERDA bldg

Unloading of vacuum cryostat (6 March 08)

2

Produced from selected low-background austenitic steel

Designed for external γ,n,μ background ~10⁻⁴ cts/(keV kg y)

Ø 10 m H = 9.5 m V = 650 m³

construction of clean room

• Nov/Dec.'09: Liquid argon fill

• Jan '10: Commissioning of cryogenic system

• Apr/Mai '10: emergency drainage tests of water tank

• Apr/Mai '10: Installation c-lock

• May '10: 1st deployment of FE&detector mock-up (27 pF) - pulser resolution 1.4 keV (FWHM); first deployment of nonenriched detector

• June '10: Start of commissioning run with ^{nat}Ge detector string

• **Soon**: start of Phase I physics data taking

Glove-box for Ge-detector handling and mounting into commissioning lock under N₂ atmosphere installed in clean room

LLOO

Phase I Detectors

Bare diodes are operated in LAr

- p-type, coaxial
 low mass holder
- Cold electronics in LAr driving 10m cable to FADC

8 diodes (HdM, IGEX)

- isotopically enriched (86%)
- total mass of 17.66 kg
- 6 diodes (Genius-TF)
 - ^{nat}Ge detectors
 - 15.60 kg

All diodes reprocessed and tested they work stable in LAr FWHM (1.33MeV) ~ 2.5 keV

Phase I Detectors

Full Phase I Detector Array

Bare diodes are operated in LAr

- p-type, coaxial
 low mass holder
- Cold electronics in LAr driving 10m cable to FADC
- 8 diodes (HdM, IGEX)
 - isotopically enriched (86%)
 - total mass of 17.66 kg
- 6 diodes (Genius-TF)
 - ^{nat}Ge detectors
 - 15.60 kg

All diodes reprocessed and tested they work stable in LAr FWHM (1.33MeV) ~ 2.5 keV

Commissioning Run

- one string with
- three non-enriched detectors
- Exposure: 30 days

0.587 kg * y)

- Anti coincidence
- Muon Veto

⁴²Ar – The surprising background ...

- If ^{42}K decay on detector surface \Rightarrow bgd to $0\nu\beta\beta$

Tests with different configurations ongoing

• Background rate significant lower than previous experiments (HdM, IGEX), but still higher than Phase I goals (0.01 counts/(keV·kg·year))

- Few more commissioning runs to optimize background (e.g. electric field configuration)
- \Rightarrow Deployment of 3 enriched detectors

Production of BEGe detectors from enrGe

After successful test of production production chain with deplGe:

- 37.5 kg of 86% enrGe (in form of GeO2) purified to 35.4 kg (94%) of 6N (+ 1.1 kg tail = 97%);
- crystal pulling and detector fabrication under preparation

R&D liquid argon instrumentation

lock for Ge-detector deployment

copper cryostat inner $\emptyset = 90$ cm, height = 205 cm LAr volume = 1 m³ (1.4 t) coated with WLS mirror foil

PMTs 9× 8" ETL 9357 coated with WLS

detector strings

graded shield

15 cm copper 10 cm lead 23 cm steel 20 cm polyethylene

Low background GERDA-LArGe test facility @ LNGS: Detection of coincident liquid argon scintillation light to discriminate background

R&D liquid argon instrumentation

Operation of Phase II detector prototype in LArGe: Measured suppression factor at $Q_{\beta\beta}$: ~0.5·10⁴ for a near ²²⁸Th calibration source Also: successful read out scintillation light with fibers coupled to SiPMs

Conclusions & Outlook

GERDA experimental installations completed successfully; cryogenic and auxiliary systems operate very stable

- Detector commissioning with non-enriched detectors started June 2010 (still ongoing)
- Initial count rate dominated by 42 K (42 Ar progenitor) due to concentration of 42 K close to the detectors by E-field of diodes \Rightarrow field-free configuration
- 12 commissioning runs with different detectors, read-out schemes, E-field configurations completed successfully still work needed to fully understand our background
- Background with non-enriched detectors currently at 0.06 cts/(keV kg year) without pulse shape analysis. Goal for Phase I: 0.01 cts/(keV kg year)
- Deployment of first string with enriched detectors soon
- Thick-window p-type BEGe detectors for Phase II: additional background discrimination by pulse shape analysis (MSE/SSE, contact-, surface events)
- Full production chain tested for BEGe Phase II detectors
- 37.5 kg of 86% "Ge (in form of GeO2) successfully transformed to 35.4 kg (94%) of 6N
- Crystal pulling and detector production under preparation
- Liquid argon instrumentation shown in GERDA-LArGe test stand to be a powerful method to discriminate backgrounds (factor ~10³): implementation in GERDA if needed