

Status of the GERDA Experiment

Béla Majorovits for the GERDA collaboration Max-Planck-Institut für Physik, München, Germany

- A short GERDA history: Design and construction
- First background data: Understand the unexpected
- Background mitigation: control the unexpected
- First results with enriched detectors
- Installation of Phase I detectors: start of physics runs
- · Plans for phase II: new detectors

International Workshop on "Double Beta Decay and Neutrinos", Osaka, Japan, Nov. 14-17

GERDA design: Use HP⁷⁶Ge detectors

Source = ⁷⁶ Ge = Detector	High signal detection efficiency
Detector material very pure (zone refinement, Czochralski growth)	Very low intrinsic internal background
Very good energy resolution	Background due to 2νββ decay negligible
Considerable experience	Industrial production, improvements possible
Natural abundance of ⁷⁶ Ge 7,44%	Enrichment necessary

GERDA design:

GERDA design:

Location: Hall A of LNGS, Assergi, Italy 3500 mwe

Phase I: Use HdM and IGEX detectors Phase II: Convert 37.5 kg of enriched germanium (87% ⁷⁶Ge) into detectors

International Workshop on "Double Beta Decay and Neutrinos", Osaka, Japan, Nov. 14-17

GERDA design: phase I Detectors (from HdM and IGEX) after dismounting from cryostats:

ANG1: 958g

ANG2: 2833g

ANG3: 2391g

ANG4: 2372g

6

RG2: 2166g

GERDA construction:

GERDA construction:

Preliminary infrastructure for deployment of three detectors completed in June 2010

Full phase I infrastructure for deployment of 12 detectors (all HdM and IGEX plus reference detectors) completed in May 2011

International Workshop on "Double Beta Decay and Neutrinos", Osaka, Japan, Nov. 14-17

Deployment of first string:

First detectors three (natural) deployed in June 2010

International Workshop on "Double Beta Decay and Neutrinos", Osaka, Japan, Nov. 14-17

First calibration data:

FWHM @ 2.6 MeV: ~4.0 keV (<0.2%)

First background data:

⁴²K ions have long life time in LAr (half life: 12.4 hours) → Drift in E-field → attracted to surfaces close to or on detector

→ Mini Shroud (MS) against ⁴²K drift close to detector

First background data: Background mitigation: control the unexpected

→Try **Different field** configurations to repel ions from detectors (HV or GND on MS,...)

Shroud against convection (²²²Rn)

First background data: Background mitigation: control the unexpected

First background data: Background mitigation: control the unexpected

Run with "lowest BI" (Run 6): 0.04±0.02 counts/(kg y keV)

First background data:

Background lines in (not yet "optimized") runs 10,11,12 (1.6 kg y) and comparison with Heidelberg Moscow experiment (71.7 kg y)

isotope	energy	I_{HdM}	[cnts]	I_G	R	comment
	[keV]	original	normalized	[cnts]		
^{40}K	1460.8	13010 ± 134	287 ± 3	14.6 ± 5.8	$19.7~\pm~7.9$	
^{60}Co	1173.2	$3955~\pm~88$	87 ± 2	$12.8~\pm~5.8$	6.8 ± 3.1	
	1332.3	$3690~\pm~90$	$81~\pm~2$	< 7.9	> 10	
^{137}Cs	661.6	$20201~\pm~164$	$445~\pm~4$	$<\!\!2.5$	> 180	
208 Tl	583.1	$2566~\pm~228$	$57~\pm~5$	$9.9~\pm~5.8$	5.7 ± 3.4	232 Th
	2614.5	$1184~\pm~36$	$26~\pm~1$	$7.0 \ ^{+3.8}_{-2.6}$	$3.7 \ ^{+2.0}_{-1.4}$	
²¹⁴ Bi	609.3	$7552~\pm~96$	$167~\pm~2$	36.7 ± 8.1	$4.6\ \pm 0.8$	^{238}U
	1120.3	$1926~\pm~86$	$43~\pm~2$	$12.2 \hspace{0.2cm} \pm \hspace{0.2cm} 5.5 \hspace{0.2cm}$	3.5 ± 1.6	
	1764.5	2204 ± 51	49 ± 1	$7.0 \ ^{+3.8}_{-2.6}$	$6.9 \ ^{+3.8}_{-2.6}$	
^{228}Ac	910.8	$2135~\pm~115$	$47~\pm~3$	<7.7	> 6	232 Th
	968.9	$1259~\pm~82$	28 ± 2	$<\!\!6.4$	> 4.8	

→ Most important background peaks significantly less intense!

First deployment of enriched detectors :

Deployed three detectors enriched in 76Ge in June 2011 together with 4 natural HPGe detectors

First results with enriched detectors :

First results with enriched detectors :

18

4

First results with enriched detectors :

Béla Majorovits

19

Installation of phase I detectors :

International Workshop on "Double Beta Decay and Neutrinos", Osaka, Japan, Nov. 14-17

21

Installation of phase I detectors :

Phase I of GERDA started on 1.11.11 !

Installation of phase I detectors : ²²⁸Th calibration measurement

22

Installation of phase I detectors : ²²⁸Th calibration measurement

Detector	Total mass, g	HV _{dep} , V	HV, V	FWHM (2.6 MeV)		LC,		
				MCA	FADC	рА		
Enriched								
ANG 1	958	3000	4000	3.6	3.8	40		
ANG 2	2833	3000	3500	4.4-4.5	4.6	20		
ANG 3	2391	3000	3500	4.4-4.6	4.9	<10		
ANG 4	2372	2800	3200	4.0-4.5	4.4	<10		
ANG 5	2746	1000	2000	4.0	4.2	<10		
RG 1	2110	4200	4500	4.4-4.5	4.8	<10		
RG 2	2166	3800	4000	4.7-5.0	5.1	<10		
RG 3	2087	3300	3300	5.4 (6 µs)	6.1	1360		
Non-enriched								
GTF 112	2957	2000	3000	3.7	4.3	<10		

Plans for phase II: new detectors BEGe for improved background recognition

- Drift paths in point contact detectors are long
- Weighting potential is large around point contact and small in the rest of the detector
- Small "point contact"
 - → Low capacity
 - → Improved energy resolution: 1.6 keV @ 1.3 MeV!

- → Very pronounced structures for individual energy deposits
- → Improved multi site recognition efficiency by A/E parameter

Plans for phase II: new detectors Background recognition powers of BEGes

Identify surface events:

Plans for phase II: new detectors Background recognition powers of BEGes

Plans for phase II: new detectors BEGe for improved background recognition

55 kg enriched germanium in form of

Reduction to metal ingots:

Crystal pulling using Czochralski technique

36.5 kg enriched germanium in form of ingots

35.5 kg zone refined 6N enriched germanium for crystal pulling

Production chain has been tested and established using depleted germanium

→ 5 working HP^{dep}Ge detectors available

International Workshop on "Double Beta Decay and Neutrinos", Osaka, Japan, Nov. 14-17

Plans for phase II: new detectors Transport of enriched metal ingots to Canberra US

Transport in shielded container: 70cm iron, 70cm salt- water

Plans for phase II: new detectors Transport of enriched metal ingots to Canberra US

Delivered enriched germanium to Canberra, US on 14th of October. Crystal production started on 17th of October

While not being processed enriched germanium is stored in cave

30

Plans for phase II: new detectors Background rejection by detection of LAr scintillation light

Plans for phase II: new detectors Background rejection by detection of LAr scintillation light

Conclusions:

- GERDA infrastructure ready since 2010
- ⁴²K background reduced by Mini shroud and field free configuration
- Enriched LE spectra are dominated by 39Ar, 2vββ and ⁴²K
- GERDA phase I started on 1.11.11
- Phase II detector crystals presently being pulled
- Improved background rejection efficiency → improve sensitivity
- LAr scintillation light detection will be implemented in phase II

First results with enriched detectors :

