

Cosmogenic background for the GERDA experiment

Luciano Pandola INFN INFN, Laboratori del Gran Sasso, Italy

Cosmogenic Activity and Background Workshop, Berkeley – April 15th, 2011

GERDA experiment at LNGS

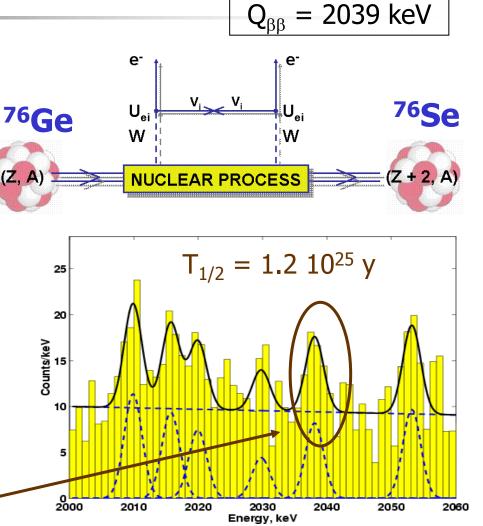
The **GERmanium Detector Array**

experiment will look for $0\nu 2\beta$ decay in ⁷⁶Ge using HP-Ge detectors enriched in ⁷⁶Ge

Hosted in the Hall A of the Gran Sasso Laboratory (INFN), in central Italy

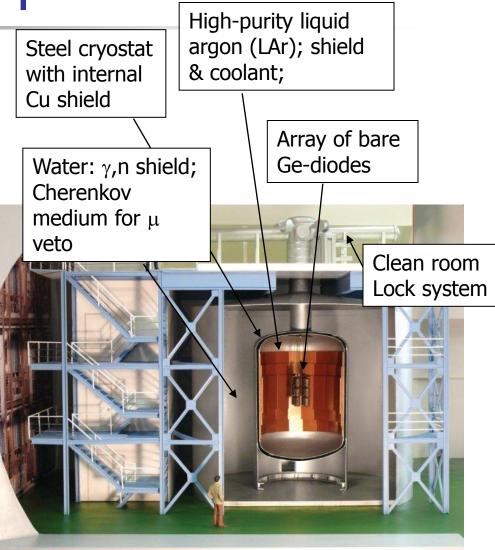
Suppression of μ -flux > 10⁶

GERDA physics


Ονββ: (A,Z)
$$\rightarrow$$
 (A,Z+2) + 2e

Neutrinoless 2β-decay violates the lepton number conservation: ΔL=2 Explore the Dirac/Majorana nature of neutrino and the absolute mass scale

Very **rare process**: $T_{1/2} > 10^{25}$ y


New generation experiments require unprecedented low-background conditions!

Claim from Klapdor-Kleingrothauset al., NIM A 522 (2004) 371

GERDA concept

- Background reduction strategy:
 - Deep underground site for suppression of cosmic ray muons
 - graded shielding against ambient radiation (Water, LAr)
 - rigorous material selection for radiopurity
 - signal analysis
- <u>Phase I</u>: 15 kg of ^{enr}Ge (existing at LNGS). Goal: 10⁻² counts/(keV kg y). Verify KK claim
- <u>Phase II</u>: add 20 kg of more ^{enr}Ge detectors. Goal: 10⁻³ counts/(keV kg y)

Unloading of vacuum cryostat (6 March 08)

Produced from selected low-background austenitic steel

Designed for external γ ,n, μ background ~10⁻⁴ cts/(keV kg y)

Ø 10 m H = 9.5 m V = 650 m³

 Nov/Dec.'09: Liquid argon fillinf

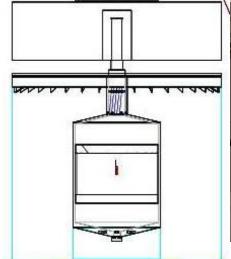
• Jan '10: Commissioning of cryogenic system

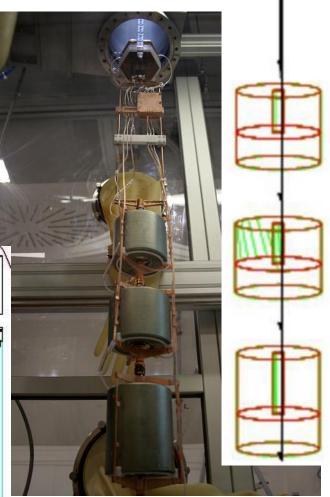
• Apr/May '10: emergency drainage tests of water tank

• Apr/May '10: Installation c-lock

• May '10: 1st deployment of FE&detector mock-up (27 pF) - pulser resolution 1.4 keV (FWHM); first deployment of nonenriched detector

• June '10: Start of commissioning run with ^{nat}Ge detector string

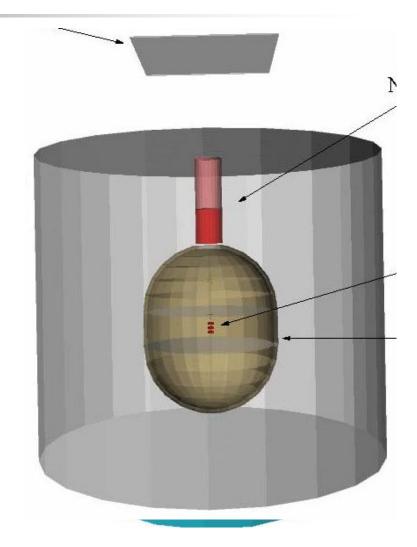

• Next: start of Phase I physics data taking


The detector string

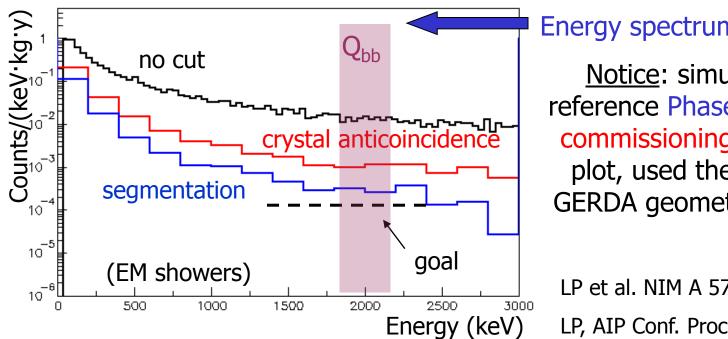
- Three low-background ^{nat}Ge detectors deployed in the commissioning string
- They belong to the former Genius Test Facility at LNGS (GTF) and are underground since several years
- Naked detectors, total Ge mass about 7.5 kg

 Dedicated MC simulation performed with the MaGe framework

 Help with the background analysis and interpretation


Cosmogenic background in GERDA

1. prompt μ -induced interactions underground


- Cherenkov veto very effective
- 2. short-lived (but $T_{1/2} > 100 \text{ ms}$) isotopes produced by muon showers underground in detectors and other materials
 - ⁷⁷Ge, ⁷⁷mGe, ⁴⁰Cl, ³⁸Cl, etc.
 - not always possible to use delayed coincidence with the μ veto signal
- 3. long-lived isotopes produced by cosmogenic activation **above ground** in detectors (⁶⁰Co, ⁶⁸Ge) or other materials (³⁹Ar, ⁶⁰Co, ...)
 - waiting is not an option: $T_{1/2}$ years or centuries

Monte Carlo simulations

- Run MC campaign in 2006-2007 using the reference GERDA design at that time
 - Cu cryostat
 - paper published on NIM A
- Re-run later on with the new design
 - Stainless steel cryostat with Cu internal lining
 - Unpublished → I cannot sell it as a "prediction"
- Used MaGe/Geant4 in both cases, primary spectrum from MUSUN

What did we expect? (1)

Energy spectrum in the detectors

Notice: simulation run for reference Phase-I array, **not** for commissioning string. For this plot, used the old version of GERDA geometry (Cu cryostat)

LP et al. NIM A 570 (2007) 149 LP, AIP Conf. Proc. 870 (2007) 105

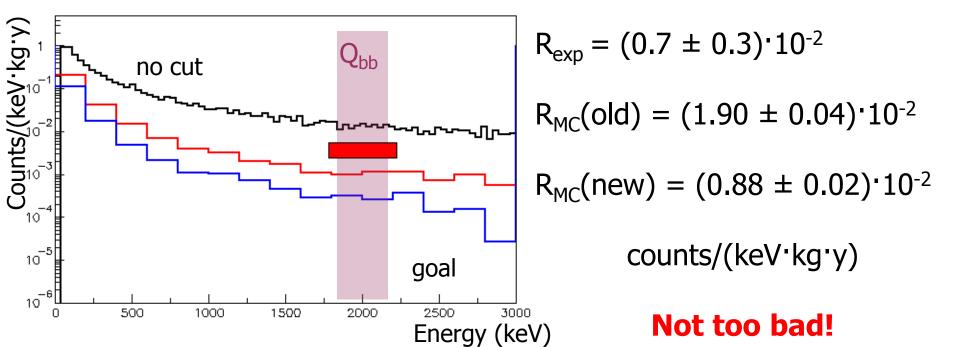
For reference Phase I, *without* anti-coincidence, expected 1.9^{-2} counts/(keV·kg·y)

For the real GERDA geometry (stainless steel cryostat) and the Phase I reference array expected 0.9.10⁻² counts/(keV·kg·y)

What did we expect? (2)

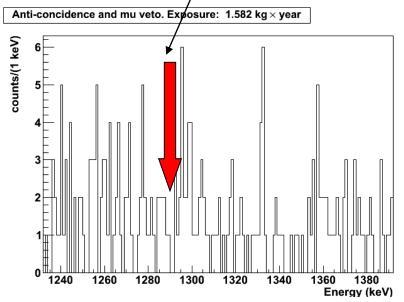
- Considered isotopes having Q-value > $Q_{\beta\beta}$ and 100 ms < $T_{1/2}$ < days
 - In <u>crystals</u>: ⁷⁴Ga, ⁷⁵Ga, ⁷⁶Ga, ⁶⁸Ge, ⁶⁹Ge, ⁷⁷Ge, ⁷¹Zn
 - In <u>cryoliquid</u>: ¹³N, ¹¹C, ¹²B, ³⁸Cl, ³⁹Cl, ⁴⁰Cl
 - In <u>water</u>: ¹⁶N, ¹⁴O, ¹²B, ⁶He, ¹³B

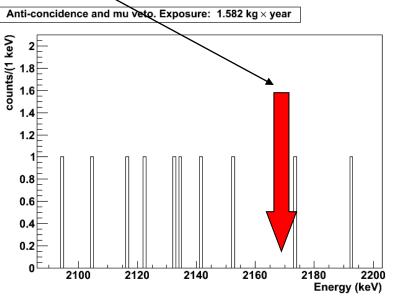
>10⁻⁶ counts/(keV kg y)


Isotope	Liquid Argon	
	nucl/(kg·y)	cts/(keV·kg·y)
⁷⁴ Ga/ ⁷⁵ Ga/ ⁷⁶ Ga	< 0.1	< 4.10-2
⁶⁸ Ge	0.08	5·10 ⁻⁶
⁶⁹ Ge	1.8	5·10 ⁻⁶
⁷⁷ Ge/ ^{77m} Ge	0.51	1.1·10 ⁻⁴
³⁸ Cl	46 day-1	3.3·10 ⁻⁵
⁴⁰ Cl	2.7 day-1	4·10 ⁻⁶

Results for the old GERDA geometry, but new ones are similar as order of magnitude. Notice: considered enrGe

LP et al. NIM A 570 (2007) 149 LP, AIP Conf. Proc. 870 (2007) 105

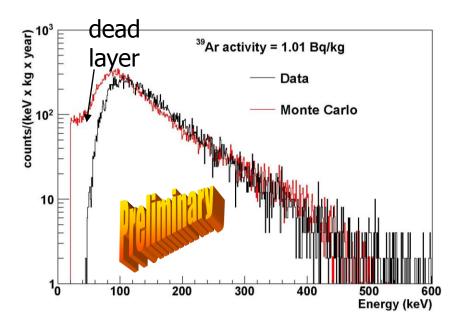

Now have a look at the data!


- Have a look at the data and verify the MC predictions!
- Check how many events observed in GERDA with the muon veto flag on (and correct for inefficiency)
 - to compare to simulation, do not apply anti-coincidence cut (different array, so different suppression efficiency)

Now have a look at the data! (2)

- Agreement for prompt μ-induced background does not imply agreement also for isotope production underground!
- Look for lines in the experimental spectrum corresponding to ⁴¹Ar (1293.6 keV), ³⁸Cl (2167 keV), ⁴⁰Cl (2839 keV)
 - most interise expected from the MC.
 - still, no chance to see them with the GERDA exposure

Look for other cosmogenics

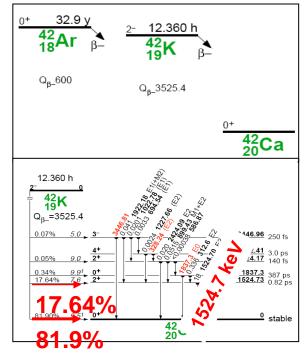

- Look for cosmogenic isotopes produced during the detector live above ground (⁶⁰Co, ⁶⁸Ge)
- GTF detectors are stored underground since years
- No indication of ⁶⁰Co and ⁶⁸Ge/⁶⁸Ga characteristic γ lines (1173 keV, 1332 keV, 1077 keV)
 - can place a limit on their activity in the detectors of
 - need a Monte Carlo simulation
 - presently in progress
- Clearly seen ⁵⁸Co (811 keV line, T_{1/2} = 70 day) coming from a Cu encapsulation (used only in one GERDA run) which was flown to LNGS

Cosmogenic contaminants of Ar (1)

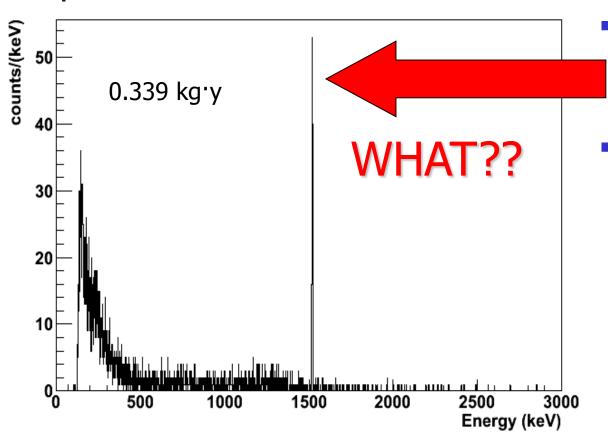
³⁹Ar (1.01 Bq/kg, T_{1/2}=269 y)

- pure beta emitter with low Q-value (565 keV)
 - not an issue for GERDA, much below the region of interest
- dominates the low-energy counting rate
- cosmogenic production in atmosphere via (n,2n)

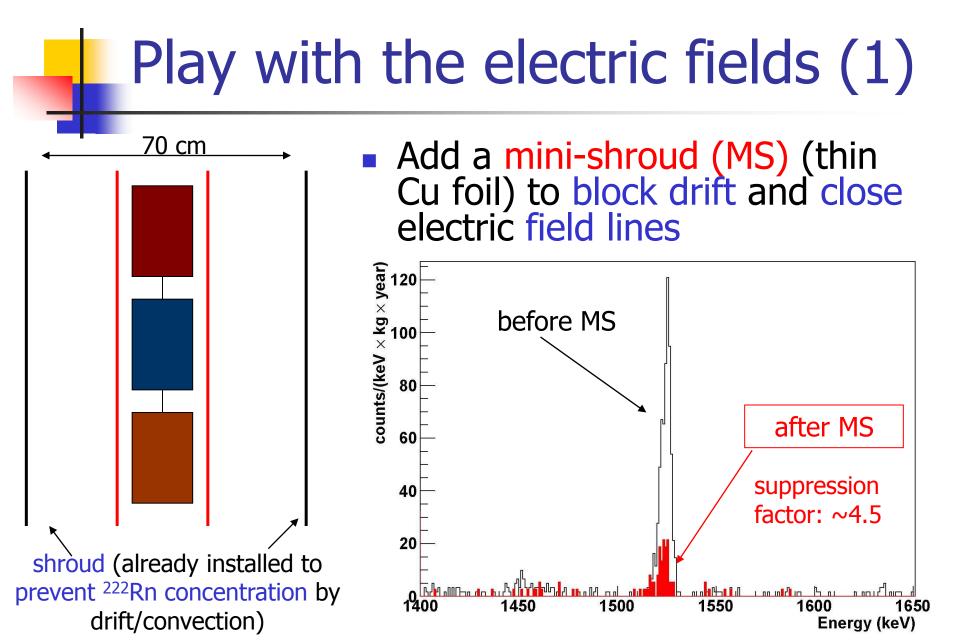
□ Can use GERDA low-energy data to cross-check the ³⁹Ar specific activity □ need a Monte Carlo to predict the ³⁹Ar contribution in the detector array (bremsstrahlung and direct β -rays) □ **preliminary** work done (simplified Monte Carlo) → **fair agreement** between GERDA signal and expectations for 1.01 Bq/kg rate


Cosmogenic contaminants of Ar (2)

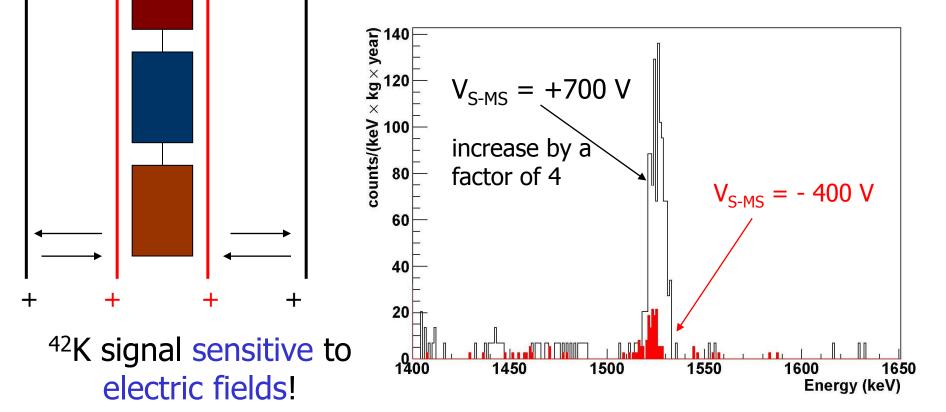
⁴²Ar (<42 μBq/kg, T_{1/2} = 32.9 γ)


• cosmogenic via (α ,2p), nuclear explosions/reactors via (n, γ)(n, γ) • ⁴²Ar itself not a concern, but its **progeny** ⁴²K is a background source for GERDA (Q_B =3520 keV, $T_{1/2}$ =12 h)

- Signature of ⁴²K: γ ray at 1524.7 keV (18%)
- Literature limit(*) corresponds to about 0.1 counts/(kg·d) at 1525 keV for the GERDA 3-detector array
 - contribution at Q_{ββ} (MC) of a few 10⁻³, counts/(keV kg y) dominated by β rays penetrating through the dead layer
- Only upper limits, no positive measurement


(*) Ashitkov at al., arXiv: nucl-ex/0309001

First GERDA Run: surprise!



- Observed 1525 keV line at ca. 2 cts/(kg·d) → x20 literature limit! How possible?
- But: we have electric fields dispersed in LAr...
 - not the case in standard cryostats
 - outer detector surface biased at 3 kV
 - ⁴²K may be charged
 - are we concentrating ⁴²K closer to the detectors?

Play with the electric fields (2)

- In the same setup, one can also change the relative V between shroud and mini-shroud
- Check if you can attract ⁴²K ions!

⁴²Ar/⁴²K signal & GERDA

- Confirmed independently in the LArGe R&D setup underground at LNGS
- Positive measurement of ⁴²Ar contamination in Ar (for the first time!) → need field-free configuration to avoid bias
 - Anyway larger than the existing upper limit (43 μ Bq/kg)
- ⁴²K signal can be reduced/suppressed by electric field. Tried a few different configurations of electric fields
 - no major changes at $Q_{\beta\beta} \rightarrow$ GERDA background not dominated by ⁴²K
- Anyway, danger at $Q_{\beta\beta}$ only if β -rays penetrate directly in the detector (only a rare high-energy γ)
 - expected 7·10⁻³ counts/(keV kg y) for uniform distribution, OK for Phase I
 - many handles to further reduce: additional passivation, encapsulation, repel ⁴²K ions by electric fields, etc.

Conclusions

- GERDA experiment will look for 0v2β decay in ⁷⁶Ge at LNGS using naked HPGe detectors operated in LAr
- Construction completed, commissioning presently in progress: 3 ^{nat}Ge detectors operated
- Estimates/MC simulations for cosmogenic backgrounds: direct (prompt) µ-events, activation under ground and activation above ground → now can check with data
- Muon-induced background (prompt & delayed) consistent with expectations
- Surprise: relevant ⁴²Ar/⁴²K signal. First positive measurement
 - sensitive to electric fields
 - <u>not an issue</u>: several handles to reduce the background at $Q_{\beta\beta}$
 - run a field-free set-up to quantify the ⁴²Ar specific activity in LAr
 - but surely larger than upper limit from the literature