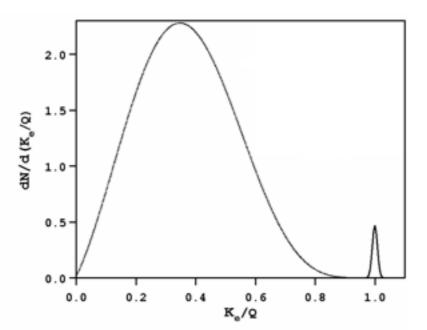
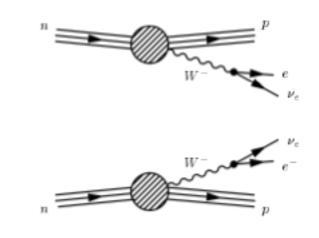

Results of the commissioning phase of GERDA


and short status report on neutrino-less double beta decay experiments


József Janicskó-Csáthy for the GERDA collaboration

2β decay

2β decay with 0 neutrinos

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\bar{v}_{e}$$

allowed and observed

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-}$$

violates lepton number conservation

$$\left(T_{^{1/2}}^{0
u}
ight)^{-1} = F^{0
u}\cdot\left|\mathcal{M}^{0
u}
ight|^2\cdot m_{etaeta}^2$$

$$\langle m_{\beta\beta} \rangle^2 = \left| \sum_i U_{ei}^2 m_{\nu i} \right|^2$$

 $M^{0\nu}$ - nuclear matrix element

 $F^{0
u}$ - phase space integral depends on the Q value $\langle m_{etaeta}
angle$ - effective neutrino mass

Present status

M - mass of the isotope

t - time

B - background

ΔE - resolution

For a better limit we need:

- more mass
- lower background
- better energy resolution
- measure longer ??

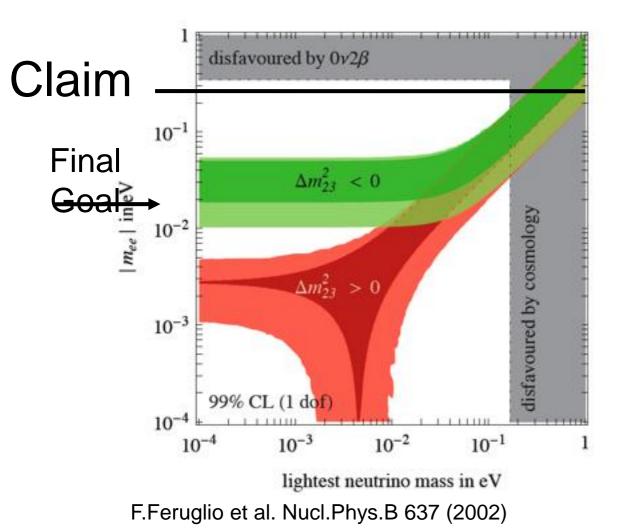
AL TOSOIGHOIT			
⁴⁸ Ca	4.4x10 ¹⁹ (NEMO3)	>1.3x10 ²² (NEMO3)	4.77
⁷⁶ Ge	1.78x10 ²¹ (HdM)	1.19x10 ²⁵ ? (HdM)	2.04
⁸² Se	9.6x10 ¹⁹ (NEMO3)	>2.1x10 ²³ (NEMO3)	2.29
⁹⁶ Zr	2.3x10 ¹⁹ (NEMO3)	>8.6x10 ²¹ (NEMO3)	3.35
¹⁰⁰ Mo	7.1x10 ¹⁸ (NEMO3)	>5.8x10 ²³ (NEMO3)	3.03
¹¹⁶ Cd	2.8x10 ¹⁹ (NEMO3)	>1.18x10 ¹⁹ (COBRA)	2.81
¹³⁰ Te	7.6x10 ²⁰ (NEMO3)	>2.8x10 ²⁴ (Cuoricino)	2.53
¹³⁶ Xe	>8.5x10 ²¹ (Baksan)	>3.1x10 ²³ (Baksan)	2.46
¹⁵⁰ Nd	9.11x10 ¹⁸ (NEMO3)	>1.8x10 ²² (NEMO3)	3.36

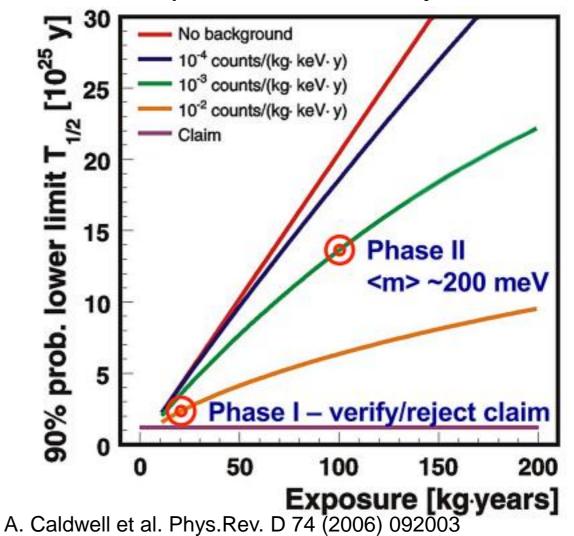
Not so Near future expectations

Future experiments, R&D projects and proposals, (without completeness)

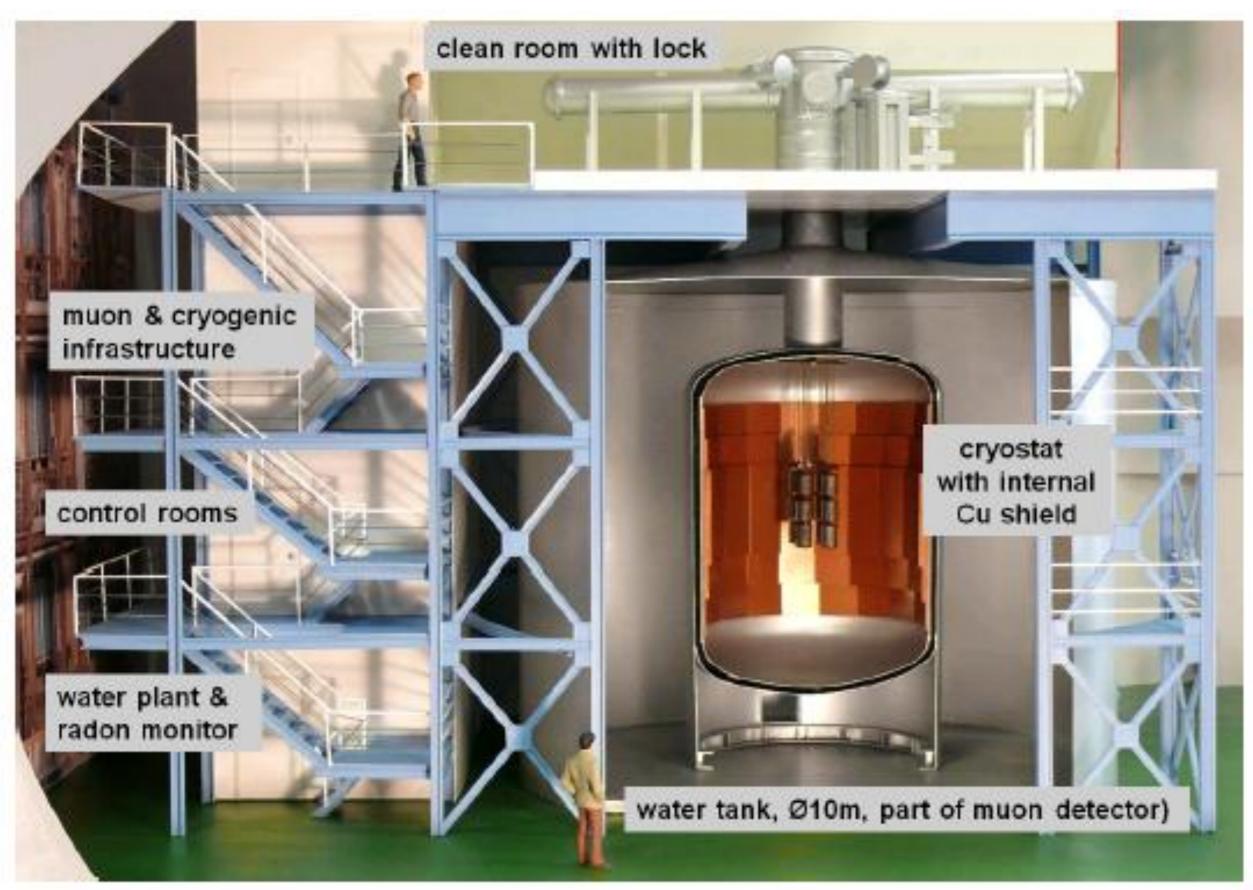
Experiment	Isotope	Mass	T1/2	m _{ββ} (meV)
CANDLES	⁴⁸ Ca	~ton	>10 ²⁶ y	~30
MAJORANA	⁷⁶ Ge	~120 kg	>5.5x10 ²⁶ y	< 100
superNEMO	⁸² Se	>100 kg	>10 ²⁶ y	40 - 110
MOON	¹⁰⁰ Mo	~ton	10 ²⁶ y	~30
LUCIFER	¹¹⁶ Cd,	~10 kg	>2x10 ²⁶ y	50 - 100
COBRA	¹¹⁶ Cd, ¹³⁰ Te	400 kg	> 10 ²⁶ y	50
CUORE	¹³⁰ Te	203 kg	>2x10 ²⁶ y	20 - 160
EXO-200	¹³⁶ Xe	200 kg	>6.4x10 ²⁵ y	133 - 186
NEXT	¹³⁶ Xe	100 kg	10 ²⁶ y	~ 100
KamLAND-Zen	¹³⁶ Xe	400 kg	>4x10 ²⁶	40-80
SNO+	¹⁵⁰ Nd	44 kg	>10 ²⁵ y	100 - 250
DCBA	¹⁵⁰ Nd	330 kg	>10 ²⁵ y	~30

Data collected from proposals and public presentations


The goal of every future experiment is to reach at least 50 meV, but 10 meV needed to exclude inverted hierarchy


Missing from the table: timescale and cost

We got competitors!


GERDA

- GERDA will test the Claim
- Phase I: HdM and IGEX detectors will be redeployed. total mass 17.66 kg with a projected background level of 10⁻² cts/(keV kg y)
- Phase II: 37 kg additional enriched ⁷⁶Ge is available for detector production. Projected background level 10⁻³ cts/(keV kg y)
- GERDA is also an R&D project for a future 1 ton experiment with Majorana

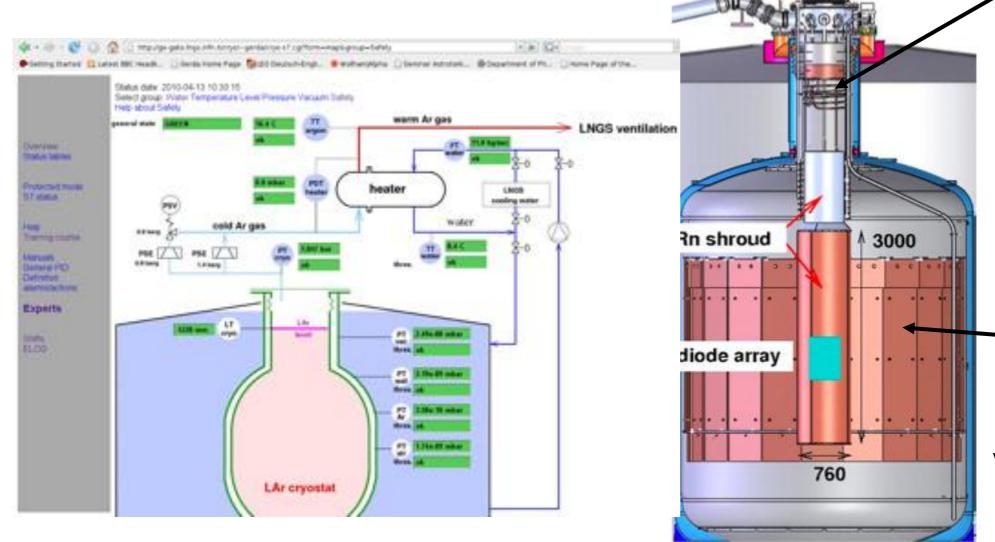
GERDA at Gran Sasso

GERDA Milestones

Cryostat delivered March 2008

Water tank completed May

2009 April Clean Room built up

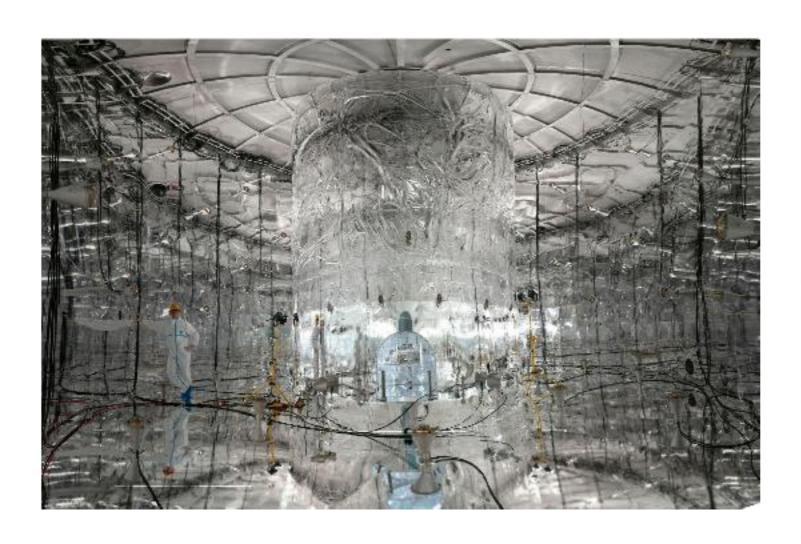

2009 construction completed: In Nov. 2009 started filling with LAr

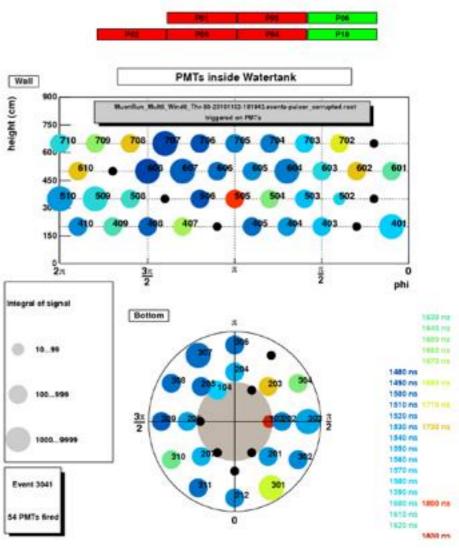
Cryogenic Infrastructure

 LAr level stable, no evaporation losses: active cooling with LN

Slow control with web interface

Operating since 2009, Nov


Cooling circuit


Cu shield

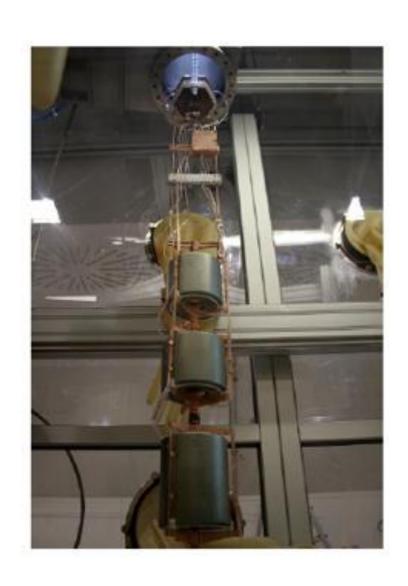
Vacuum insulated steel cryostat

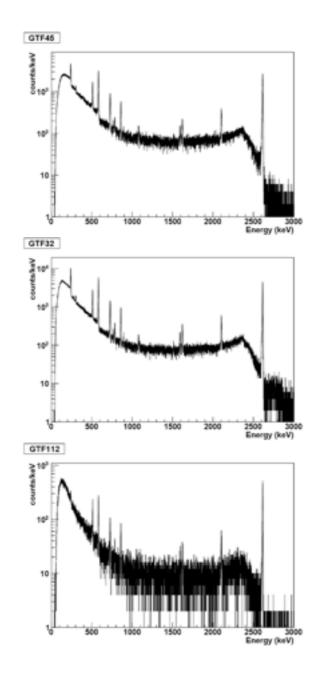
Muon veto

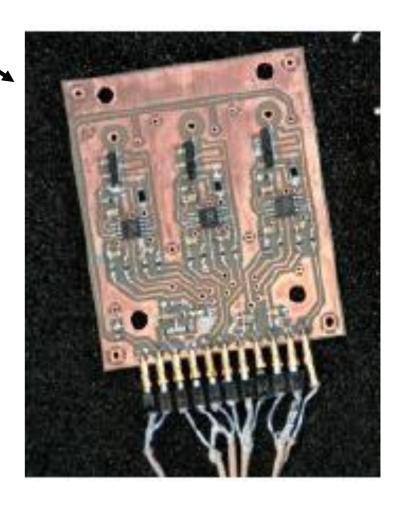
- 580 t of water instrumented with 66 PMTs
- 4 m² plastic scintillator panels on the top
- Completed in 2010, fully functional

Detector handling

- Class 10000 clean room with a class 100 flow box inside for detector handling
- HPGe detectors never come in contact with air:
 - Stored in vacuum
 - Mounted in flow box in N₂






Read-out chain

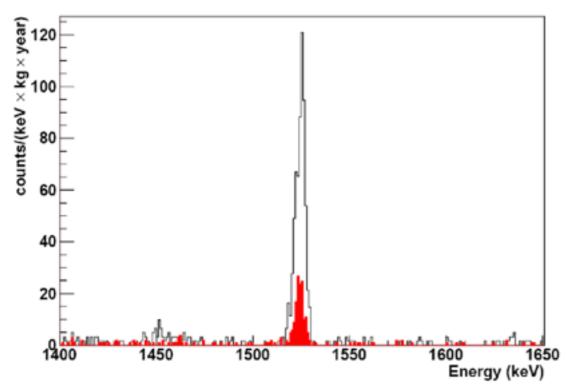
- DAQ with FADCs
- Amplifiers have to be close to the HPGe
 - Cryogenic low activity front-end

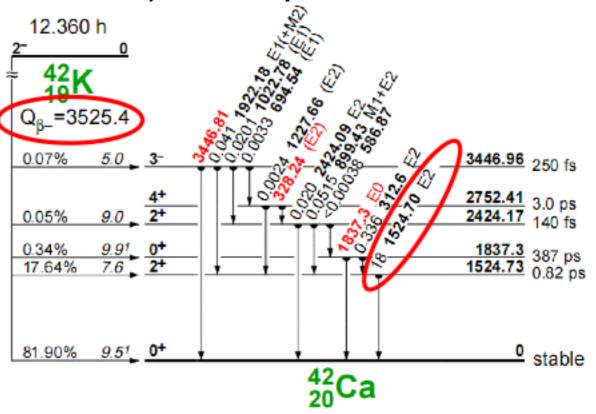
All up and running

Calibration Spectra with ²²⁸Th source

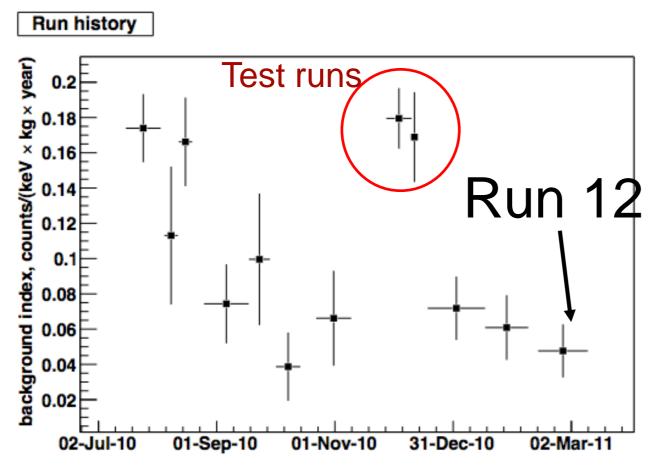
Commissioning runs

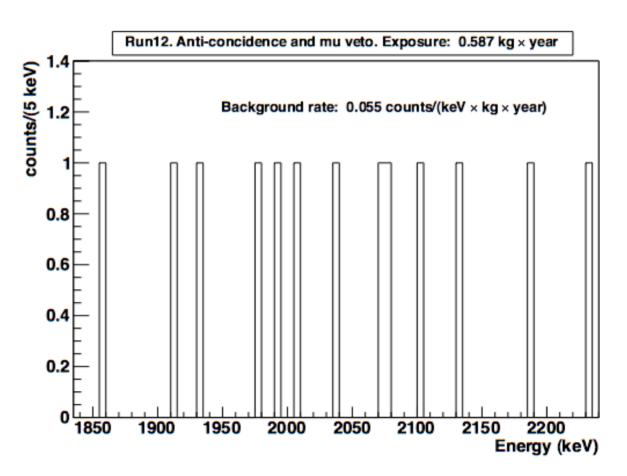
One string operated with 3 natural Ge detectors


1.7 kg/y data collected with non-enriched detectors

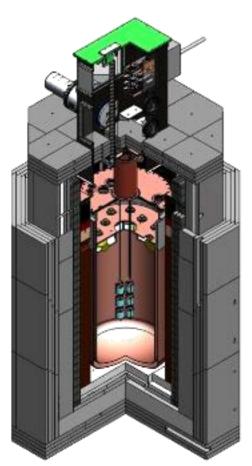

 Background level already better than in the HdM experiment

• First surprise: main background source 42Ar/42K

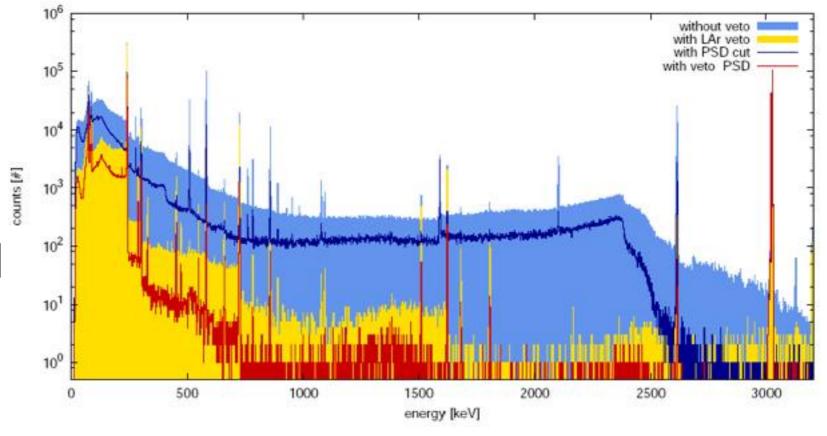

In the ROI background from ~3 MeV β's


• Caracitina to E-field, we hope to reduce it

Commissioning runs



- Background level of 0.055 ± 0.023 cts/(keV kg y) reached.
- Commissioning will take some time because we need weeks to see a few counts


R&D for Phase II

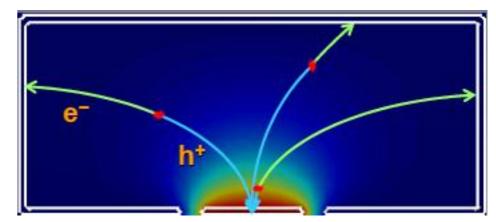
LArGe facility at LNGS

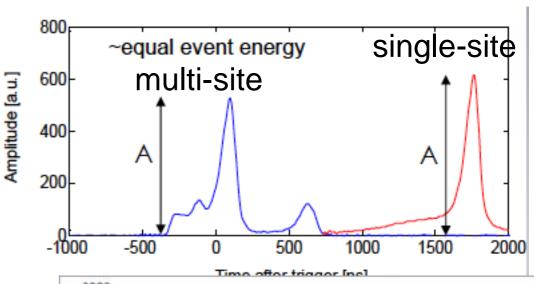
- R&D project for LAr instrumentation
- 1t LAr low background cryostat at LNGS
- LAr scintillation light read out with 9 PMTs
- + low background HPGe detectors

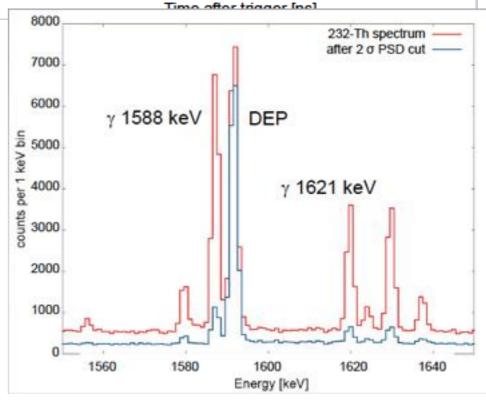
Spectacular suppression of the Compton background around 2MeV

⁷⁶Ge for Phase II

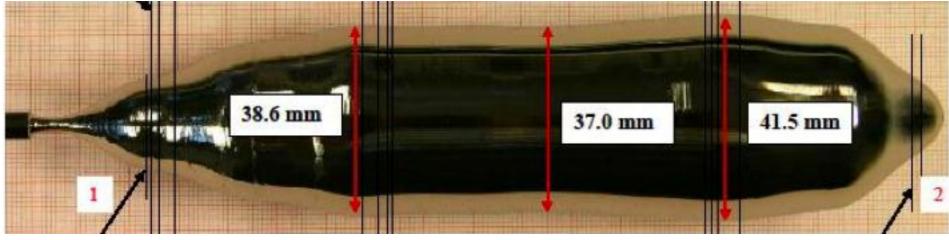
- 53 kg of enriched GeO₂ bought from ECP reduced and purified
- 36.6 kg Ge metal produced out of which 35.4 kg is 6N purity and is available for detector production
- Stored underground in the Rammelsberg mining museum, Goslar




Cosmogenic ⁶⁸Ge and ⁶⁰Co two orders of magnitude less than in equilibrium


R&D for Phase II

- BeGe's are the preferred candidates for Phase II
- Good Pulse Shape
 Discrimination capabilities and commercially available
- BeGe prototype detectors already produced from depleted Ge



Rad for Phase II and

• Crystal pulling R&D at A Gistallzüchtur (IKZ) continues

- The best crystal produced has the imp. conc.
 4x10¹⁰ / cm³
 - A test-diode is being produced now

Segmented detector R&D is still continuing

Conclusion

- Construction of GERDA is finished
- We are taking data with natural Ge detectors
- Background level already lower than in the HdM experiment
- Enriched detectors will be deployed soon
- The preparation of Phase II is progressing fast

The Collaboration

- about 100 members
- 19 institutions from 6 countries

M. Agostiniⁿ, M. Allardt^c, E. Andreotti^e, A.M. Bakalyarov^l, M. Balata^a I. Barabanov j, M. Barnabe-Heider f, L. Baudis s, C. Bauer f, N. Becerici-Schmid m, E. Bellotti g,h, S. Belogurov k,j, S.T. Belyaev l, G. Benato o,p, A. Bettini o,p, L. Bezrukov j T. Bruch^s. V. Brudanin^d. R. Brugnera^{o,p}. D. Budjasⁿ. A. Caldwell^m. C. Cattadori^{g,h}. F. Cossavella^m, E.V. Demidova^k, A. Denisov^j, S. Dinter^m, A. Domula^c, V. Egorov^d F. Faulstich^m, A. Ferella^s, K. Freund^r, F. Froborg^s, N. Frodyma^b, A. Gangapshev^j A. Garfagnini o,p. S. Gazzana l,d. P. Grabmayr V. Gurentsov J. K.N. Gusev l,d. W. Hampel f, A. Hegai r, M. Heisel f, S. Hemmer op, G. Heusser f, W. Hofmann f. M. Hult^e, L. Ianucci^a, L.V. Inzhechik^j, J. Janicskoⁿ, J. Jochum^r, M. Junker^a S. Kianovsky^j, I.V. Kirpichnikov^k, A. Kirsch^f, A. Klimenko^{d,j}, K-T. Knoepfle^f O. Kochetov d, V.N. Kornoukhov k,j, V. Kusminov j, M. Laubenstein d, V.I. Lebedev l, B. Lehnert^c, S. Lindemann^f, M. Lindner^f, X. Liu^q, A. Lubashevskiy^f B. Lubsandorzhiev^j, A.A. Machado^f, B. Majorovits^m, G. Marissens^e, G. Meierhofer^r. I. Nemchenok d, S. Nisi a, C. O'Shaughnessy m, L. Pandola a, K. Pelczar b, F. Potenza a. A. Pulliaⁱ, M. Reissfelder ^f, S. Riboldiⁱ, F. Ritter ^r, C. Sada ^{o,p}, J. Schreiner ^f U. Schwan f, B. Schwingenheuer f, S. Schönert n, H. Seitz m, M. Shirchenko l,d H. Simgen f, A. Smolnikov f, L. Stanco p, F. Stelzer m, H. Strecker f, M. Tarka s. A.V. Tikhomirov^l, C.A. Ur^p, A.A. Vasenko^k, O. Volynets^m, M. Wojcik^b, E. Yanovich^j P. Zavarise^a, S.V. Zhukov^l, D. Zinatulina^d, F. Zoccaⁱ, K. Zuber^c, and G. Zuzel^b.

a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy b) Institute of Physics, Jagellonian University, Cracow, Poland ^c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany d) Joint Institute for Nuclear Research, Dubna, Russia e) Institute for Reference Materials and Measurements, Geel, Belgium Max Planck Institut f
ür Kernphysik, Heidelberg, Germany g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy h) INFN Milano Bicocca, Milano, Italy ⁴) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy J) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia k) Institute for Theoretical and Experimental Physics, Moscow, Russia I) Russian Research Center Kurchatov Institute, Moscow, Russia ^m) Max-Planck-Institut f¨ur Physik, M¨unchen, Germany n) Physik Department E15, Technische Universität München, Germany o) Dipartimento di Fisica dell'Università di Padova, Padova, Italy P) INFN Padova, Padova, Italy q) Shanghai Jiaotong University, Shanghai, China Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany *) Physik Institut der Universität Zürich, Zürich, Switzerland