The GERDA Experiment: **Status and Perspectives**

Călin A. Ur, INFN Padova for the GERDA collaboration

eutrino Oscilation Workshop, Conca Specchiulla, Italy, September 4-11 2010

Outline

- The GERDA experiment 1. - short introduction 2. Status of Phase I - installation - first measurements 3. Perspectives for Phase II - the detectors
 - R&D

Physics of the GERDA Experiment

Search for the half-life of the $0\nu\beta\beta$ -decay of ^{76}Ge

Sensitivity of the GERDA Experiment

$$T_{1/2}^{0\nu}(y) > \frac{\log 2 \cdot N_A}{k_{CL}} \cdot \frac{\varepsilon \cdot k_{enr}}{A} \cdot \sqrt{\frac{M \cdot t}{B \cdot \Delta E}}$$

- well established enrichment technique (reasonable cost for > 80%)
 ⇒ enrichment k_{enr} = 86% ⁷⁶Ge
 established detector technologies
 - \Rightarrow large total mass M (expandable)
- very good energy resolution:
 - \Rightarrow small Δ E ~ 2-3 keV
- very good detection efficiency because detectors made of source material

1 ~ 3 ⇐

 detector-grade semiconductors are high-purity materials (low background)
 ⇒ small direct contribution to the bckg. index B

Optimize the parameters

• Bare enrGe-diodes array in LAr

• Shield: high-purity LAr/H₂O

Background Sources in the GERDA Experiment

Source	B [10 ⁻³ cts/(keV kg y)]
Ext. γ from ²⁰⁸ Tl (²³² Th)	
Ext. neutrons	<0.05
Ext. muons (veto)	<0.03
Int. ⁶⁸ Ge (t _{1/2} = 270 d)	12
Int. ⁶⁰ Co (t _{1/2} = 5.27 y)	2.5
²²² Rn in LAr	<0.2
²⁰⁸ TI, ²³⁸ U in holder	<1
Surface contamination	<0.6

Muon veto

180 days exposure after enrichment + 180 days underground storage

30 days exposure after crystal growing

Target values: Phase I: B < 10⁻² cts/(keV· kg· y) Phase II: B < 10⁻³ cts/(keV· kg· y)

Background Reduction in the GERDA Experiment

Background reduction methods

- Underground laboratory
- Material cleaning
- Passive shield (Cu&Pb&LAr)
- Muon veto

- Pulse shape analysis vs. detector segmentation
- Detector anti-coincidence
- R&D: LAr scintillation

Phases of the GERDA Experiment 30 Mass hierarchy 90% prob. lower limit $T_{1/2}$ [10²⁵ y] No background F.Vissani hep-ph/0606054v2 10⁻⁴ counts/(kg· keV· y) **KK claim** 10⁻³ counts/(kg· keV· y) 25 250 meV 10⁻² counts/(kg· keV· y) degenerate Claim 110 meV 1 UP 20 $\Delta m_{23}^2 < 0$ $\frac{\sum_{e \in w} 10^{-2}}{10^{-2}}$ phase II inverted 15 disfavoured by cosmology 40kg enrGe 3 years 10 $\Delta m_{23}^2 > 0$ normal 10-3 lase A.Strumia 5 18kg enrGe vear **KKDC** 99% CL (1 dof) 0 10^{-4} 50 100 150 200 0 10-4 10^{-3} 10^{-2} 10^{-1} Exposure [kg-years] lightest neutrino mass in eV GERDA Phase I - after 1 year able to verify the KK claim

Phase III (GERDA+Majorana) – 1 ton exp. \rightarrow ~50 meV

Status of Phase I

Mounting of GERDA

C.A. Ur - NOW2010

Phase I Detectors

Detector	Total mass	HV
	(g)	(V)
ANG 1	958	3500
ANG 2	2833	4000
ANG 3	2391	3000
ANG 4	2372	3000
ANG 5	2746	1800
RG 1	2110	4500
RG 2	2166	4000
RG 3	2087	3500
GTF 32	2321	3200
GTF 42	2467	3000
GTF 44	2465	3500
GTF 45	2332	1500
GTF 110	3046	3000
GTF 112	2965	2500
Prototype	1560	3000

- 8 enrGe (HdM&IGEX) + 6 natGe (GTF) p-type coaxial Ge detector refurbished
- enrGe mass:1-3 kg (total 17.9 kg)
- C_{det} = 30-40 pF
- deployed in strings of 3 dets.
- mounted in low-mass Cu holders
- HV contact: on Li surface by pressure
- readout contact: in borehole spring-loaded
- all the detectors have been tested naked in LAr and perform well (I-V & R < 3 keV @ 1.332 MeV).
- Long term stability experimentally proved

Stability of Phase I Detectors in LAr/LN₂

Commissioning with ^{nat}Ge Det.-Running NOW

• Summer/autumn 2009: integration test of phase I detectors, FE, lock, DAQ, LAr dewar

 \Rightarrow energy resolution ~ 2.7 keV @ 1332 keV

- Apr/May 2010: Installation of single-string lock in the GERDA cleanroom
- May 2010: Deployment of FE & detector mock-up, followed by first deployment of a of non-enriched det.
- June 2010: Water tank filling
- June 2010: Commissioning run with 3 ^{nat}Ge detectors
- four cooling cycles made until now
- grounding problems
- characterization runs with Th source
- optimizing energy reconstruction algorithms from digital data
- long-term background measurement are in progress

^{nat}Ge Detectors in LAr - ²²⁸Th source

Operation of the 3 natGe Detectors String

Date	te Detector Signal cable length	FWHM [keV]		
		length	Pulser	γ-ray of 2.6 MeV
11/07/2010	GTF 45	~35 cm	2.8	4.4
	GTF32	~ 50 cm	2.9	4.0
	GTF112	~ 65 cm	3.1	4.2

- July 16 start of background measurement with Flash ADC (FWHM ~ 5 keV)
- pulser at 0.1 Hz
- Muon veto signal recorded with the Flash ADC
- No indication of background from U/Th/Co
- Clear peak at 1524 keV (line from 42Ca)

⁴²Ar Background 'Dilema'

A.S.Barabash, Proc. Int. Workshop on Technique and Application of Xenon Detectors 2002 42Ar/Ar = 3 x 10⁻²¹ Measurements in LArGe with BEGe > 10 times more 42Ar activity with GTF (in GERDA and LArGe setups) > even more

Study of the problem:
> origin of the effect
> possible solutions to reduce it

Mounted a mini-shround around the 3 detectors in the GERDA setup > reduction of the effect

More work needed with both setups: LArGe and GERDA

R&D for Phase II Detectors

D. Budjas et al., JINST 4 P10007 (2009)

BEGe type detectors were chosen for the Phase II of the GERDA experiment

- > good energy resolution and noise characteristics
- excellent rejection capability of discrimination between single-site and multiple-site events based on PSD analysis
- simpler electronic configuration as compared to segmented detectors
 / less background due to the reduced number of FE electronics channels and less cables

Presently tests are run with 2 deplGe and 3 natGe BEGe detectors

Discrimination based on A/E Parameter

September 2010

Test of BEGe performance in LArGe

First test of a naked BEGe detector in LAr (LArGe test bench)

 mantains its spectroscopic characteristics
 good PSA
 importance of the LAr veto for the reduction of the γ-ray backg. (R&D needed for Phase

III)

September 2010

C.A. Ur - NOW2010

Outlook

- Construction of GERDA is concluded
- The cryostat and the water tank were filled
- Since June 2nd commissioning runs with Phase I ^{nat}Ge detectors and the single-string arm are in progress
- Long-term background measurements are presently running with ^{nat}Ge GTF detectors
- By November the 3-strings lock will be installed and it will be tested with mockup and ^{nat}Ge detectors
- Mounting of the enriched detectors depends on the results from these measurements
- Presumably first results from Phase I will be available in 2011
- The R&D for the Phase II BEGe detectors development is running in parallel with the preparation of Phase I
- The BEGe detector was chosen for the Phase II due to its excellent noise and PSD characteristics

Collaboration

H.Aghaei^m, M.Agostini^f, M.Allardt^c, A.M.Bakalyarov¹, M.Balata^a, I.Barabanov^j, M.Barnabe-Heider^f, L.Baudis^q, C.Bauer^f, N.Becerici-Schmid^m, E.Bellotti^{g,h}, S.Belogurov^{k,j}, S.T.Belyaev^l, A.Bettini^{n,o}, L.Bezrukov^j, V.Brudanin^d, R.Brugnera^{n,o}, D.Budjas^f, A.Caldwell^m, C.Cattadori^{g,h}, F.Cossavella^m, E.V.Demidova^k, A.Denisiv^j, A.Di Vacri^a, A.Domula^c, A.D'Andragora^a, V.Egorov^d, A.Ferella^q, K.Freund^p, F.Froborg^q, N.Frodyma^b, A.Gangapshev^j, A.Garfagnini^{n,o}, S.Gazzana^{f,a}, R.Gonzalea de Orduna^e, P.Grabmayr^p, K.N.Gusev^{I,d}, V.Gutentsov^j, W.Hampel^f, M.Heisel^f, S.Hemmer^m, G.Heusser^f, W.Hofmann^f, M.Hult^e, L.Iannucci^a, L.V.Inzhechik^j, J.Janicsko^m, J.Jochum^p, M.Junker^a, S.Kionanovsky^j, I.V.Kirpichnikov^k, A.Klimenko^{d, j}, M.Knapp^p, K-T.Knoepfle^f, O.Kochetov^d, V.N.Kornoukhov^{k,j}, V.Kusminov^j, M.Laubenstein^a, V.I.Lebedev¹, B.Lehnert^c, D.Lenz^m, S.Lindemann^f, M.Lindner^f, I.Lippi^o, X.Liu^m, B.Lubsandorzhiev^j, B.Majorovits^m, G.Meierhofer^p, I.Nemchenok^d, L.Pandola^a, K.Pelczar^b, F.Potenza^a, A.Pulliaⁱ, S.Riboldiⁱ, F.Ritter^p, C.Rossi Alvarez^o, R.Santorelli^q, J.Schreiner^f, B.Schwingenheuer^f, S.Schoenert^f, M.Shirchenko^{l,d}, H.Simgen^f, A.Smolnikov^{d,j}, L.Stanco^o, F.Stelzer^m, M.Tarka^q, A.V.Tikhomirov^l, C.A.Ur^o, A.A.Vasenko^k, A.Vauth^m, O. Volynets^m, M.Weber^f, M.Wojcik^b, E.Yanovich^j, S.V.Zhukov¹, D.Zinatulina^d, F.Zoccaⁱ, K.Zuber^c, G.Zuzel^b

- a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy
- b) Institute of Physics, Jagellonian University, Cracow, Poland
- c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
- d) Joint Institute for Nuclear Research, Dubna, Russia
- e) Institute for Reference Materials and Measurements, Geel, Belgium
- f) Max Planck Institut für Kernphysik, Heidelberg, Germany
- g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy
- h) INFN Milano Bicocca, Milano, Italy
- i) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy
- j) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- k) Institute for Theoretical and Experimental Physics, Moscow, Russia
- I) Russian Research Center Kurchatov Institute, Moscow, Russia
- m) Max-Planck-Institut für Physik, Mühchen, Germany
- n) Dipartimento di Fisica dell'Università di Padova, Padova, Italy
- o) INFN Padova, Padova, Italy
- p) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
- q) Physik Institut der Universität Zürich, Zürich, Switzerland
- r) Shanghai Jiao Tong University, Shanghai, China

September 2010

~ 100 members 18 institutions 7 countries