Low-background aspects of GERDA

Gaicky foiregreen Master subtitle style

Max-Planck-Institut für Kernphysik / Heidelberg on behalf of the GERDA collaboration

Outline

- Introduction
- The GERDA experiment
- Selected low-background aspects:
 - Radio-purity of liquid argon
 - Cryostat fabrication
 - Frontend electronics radioactivity
 - LAr scintillation veto
- Conclusions

The GERDA collaboration

H. Aghaei^m, M. Agostini^f, M. Allardt^c, A.M. Bakalyarov^l, M. Balata^a, I. Barabanov^j M. Barnabe-Heider^f, L. Baudis^r, C. Bauer^f, N. Becerici-Schmid^m, E. Bellotti^{g,h}, S. Belogurov^{k,j}, S.T. Belyaev^l, A. Bettini^{n,o}, L. Bezrukov^j, T. Bruch^r, V. Brudanin^d, R. Brugnera^{*n,o*}, D. Budjas^{*f*}, A. Caldwell^{*m*}, C. Cattadori^{*g,h*}, F. Cossavella^{*m*}, E.V. Demidova^k, A. Denisiv^j, S. Dinter^m, A. Di Vacri^a, A. Domula^c, V. Egorov^d, F. Faulstich^m, A. Ferella^r, K. Freund^q, F. Froborg^r, N. Frodyma^b, A. Gangapshev^j, A. Garfagnini^{n,o}, S. Gazzana^{f,a}, R. Gonzalea de Orduna^e, P. Grabmayr^q, K.N. Gusev^{*l*,*d*}, V. Gutentsov^{*j*}, W. Hampel^{*f*}, M. Heisel^{*f*}, S. Hemmer^{*m*}, G. Heusser^{*f*}, W. Hofmann^f, M. Hult^e, L.V. Inzhechik^j, J. Janicsko^m, J. Jochum^q, M. Junker^a. S. Kionanovsky^j, I.V. Kirpichnikov^k, A. Klimenko^{d,j}, K-T. Knoepfle^f, O. Kochetov^d V.N. Kornoukhov^{k,j}, V. Kusminov^j, M. Laubenstein^a, V.I. Lebedev^l, B. Lehnert^c, D. Lenz^m, S. Lindemann^f, M. Lindner^f, I. Lippi^o, X. Liu^p, B. Lubsandorzhiev^j, B. Majorovits^m, G. Meierhofer^q, I. Nemchenok^d, C. O'Shaugnessy^m, L. Pandola^a, K. Pelczar^b, G. Pivato^o, F. Potenza^a, A. Pulliaⁱ, S. Riboldiⁱ, F. Ritter^q, C. Rossi Alvarez^o, J. Schreiner^f, B. Schwingenheuer^f, S. Schönert^f, M. Shirchenko^{l,d} H. Simgen^f, A. Smolnikov^{d,j}, L. Stanco^o, F. Stelzer^m, M. Tarka^r, A.V. Tikhomirov^l, C.A. Ur^o, A.A. Vasenko^k, A. Vauth^m, O. Volynets^m, M. Weber^f, M. Wojcik^b, E. Yanovich^j, P. Zavarise^a, S.V. Zhukov^l, D. Zinatulina^d, F. Zoccaⁱ, K. Zuber^c, G. Zuzel^b.

^a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy ^b) Institute of Physics, Jagellonian University, Cracow, Poland ^c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany ^d) Joint Institute for Nuclear Research, Dubna, Russia ^e) Institute for Reference Materials and Measurements, Geel, Belgium ^f) Max Planck Institut für Kernphysik, Heidelberg, Germany ^g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy ^h) INFN Milano Bicocca, Milano, Italy ⁱ) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy ¹) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ^k) Institute for Theoretical and Experimental Physics, Moscow, Russia ¹) Russian Research Center Kurchatov Institute, Moscow, Russia ^m) Max-Planck-Institut für Physik, München, Germany ⁿ) Dipartimento di Fisica dell'Università di Padova, Padova, Italy ^o) INFN Padova, Padova, Italy ^p) Shanghai Jiaotong University, Shanghai, China ^q) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany ^r) Physik Institut der Universität Zürich, Zürich, Switzerland

~100 physicists 18 institutions 7 countries

idelberg, LRT 33

Double beta decay

 $2\nu\beta\beta$: (A,Z) \rightarrow (A,Z+2) + 2e⁻ + 2 ν_{e} $\Delta L=0$ $T_{1/2}^{2\nu} = (10^{18} - 10^{21})$ y

 $0\nu\beta\beta$: (A,Z) \rightarrow (A,Z+2) + 2e⁻ ∆L=2

Experimental signatures:

- peak at Q_{ββ} = E_{e1} + E_{e2} 2m_e
 two electrons from vertex
- production of grand-daughter isotope

Double beta decay and Majorana neutrino mass

2010 / Cudhumi

GERDA sensitivity

Feruglio, Strumia, Vissani NPB 659

Using <M0v>=3.92, V.A. Rodin et al., *Nucl. Phys. A* 366 (2006) 107-131 Erratum: *Nucl. Phys. A* 793 (2007) 213-215

8/29/2010

GERDA in brief

- Ge spectroscopy with array of 76Ge-enriched diodes in ultrapure cryogenic liquid (LAr)
- Phase I:
 - Use of existing 76Ge-diodes from Heidelberg-Moscow and IGEX-experiments
 - 17.9 kg enriched diodes ~15 kg 76Ge
 - Bkg-level <10-2 counts/(keV·kg·y) @ 2039 keV to check KKCD-claim without background
- Phase II:
 - Adding new Ge diodes (total: ~40 kg 76Ge)
 - New active background suppression techniques
 - Demonstration of bkg-level <10-3 counts/(keV kg y)
 @ 2039 keV for a future one-ton experiment

8/29/2010

GERDA design

Lock

Water tank (590 m3 H2O) Cryostat (65 m3 LAr)

GERDA design

Additional inner copper shield

Germaniumdetector array

Liquid argon

H. Simgen, MPIK

2010 / Cudhum

Vacuum-insulated double wall stainless steel cryostat

8/29/2010

Water tank construction

construction of clean room

Glove-box for Ge-detector handling under protective atmosphere

LEQUY

F B

Recent progress and status

- December 2009: Liquid argon fill
- | January 2010: Commissioning of the cryogenic system
- April/May 2010: Installation of the (commissioning-) lock
- May 2010: 1st deployment of FE electronics & detector mock-up (27 pF)
 - pulser resolution 1.4 keV (FWHM)
- June 2010: First deployment of natGe detectors
- Since July 2010: Commissioning run with natGe detector string (3 diodes):
- 1st data show more 42Ar than expected %requires dedicated analysis
- Afterwards: Start phase I physics data taking

GERDA phase II

- 37.8 kg of enrGe reduced and __________ purified (Yield: 35.5 kg 6N grade + 1.2 kg tail)
- Cosmic-ray exposure minimized
- Baseline for phase II: Broad Energy Ge (BEGe) diodes (Fall-back: segmented diodes)
 - Distinct pulse shapes ð excellent multi-site event rejection
- LAr operation successfully tested
- Entire BEGe production chain successiony tested with depGe

8/29/2010

Radio-purity of liquid argon

- GERDA 222Rn specs: <0.5 μBq/m3 Ar (STP)
- Cryo-adsorption of Rn on activated carbon proven to provide ultra-pure N2 (Borexino)
 - Try to adapt same technique for LAr, but
 - T(LAr) = T(LN2) + 10K
 - Risk of Ar freezing
- Tests performed using MoREx and low background proportional counters
 - H. Simgen and G. Zuzel, Appl. Rad. Isot. 76 (2009) 922-925

8/29/2010

Results on 222Rn removal from Ar by cryo-adsorption

	Gas phase r	esults	L	iquid phase r	esults
Volume [liter LAr]	Reduction factor R	Leaking fract. 1/R [%]	Volume [liter LAr]	Reduction factor R	Leaking fract. 1/R [%]
96	>360	<0.28	58	58.5 • 17.1	1.7 🛛 0.5
169	>1120	<0.09	120	30.2 🛛 9.7	3.3 🛛 1.1
			120	27.7 🛛 6.5	3.6 🛛 0.8
ADUR (*			125	21.1 🛛 2.7	4.7 🛛 0.6
			168	42.4 🛛 5.7	2.4 🛛 0.3
			188	8.5 🛛 1.0	11.8 🛛 1.5
			193	4.9 🛛 0.6	20.4 🛛 2.4
			222	160 🛛 28	0.6 🛛 0.1
			240	10.1 🛛 0.6	9.9 🛛 0.6

Summary on Rn purification of Ar by cryo-adsorption

- Gas phase purification very efficient
- Liquid phase less efficient (poor kinetics)
- Unclear picture, but factor 100 reduction seems possible with GERDA's 1 kg carbon column
- Problem: CarboAct activated carbon has very irregular shape:
 - Not optimized for column purification
 - Probably formation of accidental between carbon grains
 - New product: Spherical carbon balls
 - 222Rn emanation: <0.5 mBq/kg

2020

8/29/2010

222Rn concentration in commercial Ar when truck is loaded

Company	Grade	222Rn [mBq/m3 (STP)]
Air Liquide	technical (4.8)	1.62 • 0.08
Air Liquide	technical (4.8)	0.38 🛛 0.03
Westfalen AG	technical (4.6)	1.11 🛛 0.05
Westfalen AG	technical (4.6)	1.04 🛛 0.09
Westfalen AG	technical (4.6)	0.50 🗌 0.02
Westfalen AG	technical (4.6)	0.007 🛛 0.001
Westfalen AG	technical (5.0)	8.4 🛛 0.4
Westfalen AG	high purity (6.0)	0.38 🛛 0.01
	technical (5.0)	0.37 🛛 0.06 *)

Initial Ar impurities

- Ar is usually delivered from a local distribution center. Unknown storage time yields unpredictable results, because
 - Initial 222Rn decays
 - New 222Rn may be produced (emanation)
- Trend shows higher initial 222Rn concentration in Ar than in N2 (~0.1 mBq/m3 (STP))
 - Possible Explanation: Boiling points (Rn > Ar > N2)

2222

H. Simgen, MPIK Heidelberg, LRT

0010 / Cudhum

8/29/2010

222Rn emanation of storage tanks for cryogenic liquids

Tank from	Grade of stored gas	Vol. [m3]	222Rn activity in saturation [mBq]	specific 222Rn act. [mBq/m3]
Westfalen AG	technical	3	177 6	59 🛛 2
Air Liquide	technical	0.67	1.8 🛛 0.4	2.7 🛛 0.6
LINDE	technical	6.3	3.5 🛛 0.2	0.56 🛛 0.03
Westfalen AG	6.0	0.67	42 🛛 2	63 🛛 3
SOL	6.0	16	65 🛛 6	4.1 🛛 0.4
LINDE	7.0	3	2.7 🛛 0.3	0.9 🛛 0.1

· JINTIN / L'HABHBA

222Rn emanation of storage tanks for cryogenic liquids

Tank from	Grade of stored gas	Vol. [m3]	222Rn activity in saturation [mBq]specific 222Rn act. [mBq/m3]		
Westfalen AG	tec Selected	for GEF	RDA	177 🛛 6	59 🗌 2
Air Liquide	tecl1.			1.8 🗌 0.4	2.7 🛛 0.6
LINDE	technical	6.3		3.5 🛛 0.2	0.56 🛛 0.03
Westfalen AG	6.0	0.67		42 🛛 2	63 🛛 3
SOL	6.0	16		65 🛛 6	4.1 🛛 0.4
LINDE	7.0	3		2.7 🛛 0.3	0.9 🛛 0.1

The GERDA cryostat

- Vacuum-insulated stainless-steel (SS) cryostat made from low-radioactivity austenitic steel
 - 228Th <1 mBq/kg for cylindrical part
 - 228Th <5 mBq/kg for top and bottom parts</p>
 - For all screening results see W. Maneschg et al., NIM A 593 (2008) 448–453

H. Simgen, MPIK Heidelberg, LRT

2525

- Additional passive copper shield inside
- Active LN2 cooling system to avoid evaporation losses

2010 / Cudhum

8/29/2010

222Rn emanation test of the GERDA cryostat

- 1. Remove air-borne 222Rn
- 2. Fill with 222Rn-free N2 (purified by cryo-adsorption)
- 3. Wait for ≥1 week to let grow-in emanating 222Rn
- 4. Mix to establish homogeneous 222Rn distribution
- 5. Extract small fraction of N2 from cryostat and determine its 222Rn concentration

0010 / Cudhum

6. Scale to entire cryostat to find total 222Rn emanation rate

H. Simgen, MPIK Heidelberg, LRT

2626

8/29/2010

Cryostat 222Rn emanation

No.	Date	Description	Single results [mBq]	Average [mBq]
1	Nov 07	After construction and cleaning, no N2 mixing	16.9 1.6stat 2 3.0sys 29.8 ∏ 2.4stat ∏ 5.8sys	23.3 🛛 3.6
2	Mar 08	After additional cleaning	13.6 [] 0.7stat [] 2.4sys 13.7 [] 0.7stat [] 2.7sys	13.7 🛛 1.9
3	Jun 08	After Cu mounting	33.0 [] 2.8stat [] 7.0sys 35.7 [] 2.9stat [] 8.8sys	34.4 🛛 6.0
4	Nov 08	After wiping of Cu / steel surfaces.	33.2 □ 3.5stat □ 1.9sys 31.3 □ 4.6stat □ 3.4sys	30.6 🛛 2.4

Welds as source for SS 222Rn emanantion

- SS tape: (5 10) µBq/m2
 - cannot explain cryostat result
- Emanation of SS welds!
- Surface effect: 226Ra can ³ electropolish be removed by etchingample No.
- Poster on surface cleaning ¹ fr 222Rn daughters by G. Zuzel
- What happens in LAr? Next talk by Sebastian Lindemann

H. Simgen, MPIK Heidelberg, LR

No	Description	Result [mBq/m]
1	SS after welding	0.36 🛛 0.04
2	SS after welding + etching (HF+HNO3)	<0.1
3	SS after welding + electropolishing	0.10 🛛 0.04
tchir	S ample No. 3 +	<0.04

Results on 222Rn emanation of welds

Homogeneity test

Before mixing:

 $ctop = (0.42 \quad 0.05) \text{ mBq/m3 (STP)}$

cbot = (0.28 □ 0.03) mBq/m3 (STP)

After mixing: ctop = (0.23 [] 0.03) mBq/m3 (STP) cbot = (0.27 □ 0.05) mBq/m3 (STP)

- If system is untouched 222Rn is NOT homogeneously distributed
- Relatively stronger 222Rn source in top part of cryostat

3030

Screening of GERDA FE electronics

Paper in preparation

Sample	226Ra	228Th	228Ra	40K
		Units: mBc	/piece	
Old frontend "PZ0"	6.3 🛛 0.5	0.2 🛛 0.1	0.2 🛛 0.1	2.2 🛛 0.7
New frontend "CC2"	0.32 🛛 0.09	0.44 🛛 0.10	<0.36	2.6 🛛 1.3
Main source	of 226Ra in P	Z0: Ba containin	g capacitor	S
X5R capacitors (Ba)	0.19 🛛 0.02	0.04 🛛 0.01	<0.05	<0.15
New capacitors (Ta)	<0.003	0.008 🛛 0.002	<0.01	0.07 [] 0.03

- Improvements in CC2 with respect to PZ0:
 - Number of components reduced
 - Hot components removed (Ba capacitors, but also resistors, pins)
- FE still critical for phase II background index

8/29/2010

The LArGe Setup with 1.3 tons of LAr

Lock: Can house up to 3 strings (9 detectors)

9 PMTs: 8" ETL9357

VM2000 & wavelength shifter

Cryostat: Inner diameter: 90 cm, Volume: 1000 liter

Shield:	Cu	15 cm	
	Pb	10 cm	
	Steel	23 cm	
	PE	20 cm	

Summary and conclusions

- Many different techniques applied to control radiopurity of GERDA during construction
 - LAr purity under control
 - Cryostat emanation too high Ô shroud
 - FE electronics critical, but OK for phase I
 - Promising results from LAr scintillation veto (+ pusle shape discrimination with BEGe's)
- GERDA setup ready. Physics data taking will start after study of 42Ar issue

H. Simgen, MPIK Heidelberg, LRT

2010 / Cudhum

3434

8/29/2010