

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

GERDA

the new neutrinoless double beta experiment on ⁷⁶Ge

Georg Meierhofer

Kepler Center for Astro and Particle Physics, University Tübingen

on behalf of the

GERDA Collaboration

Outline

- Motivation

- Neutrinoless double beta decay
- GERDA experiment
- Summary

Motivation

The GERmanium Detector Array (GERDA) experiment is designed to search for neutrinoless double beta decay ($0v\beta\beta$). The observation would imply:

- neutrino is a Majorana particle
- lepton number violation $\Delta L=2$

 $(A,Z) \rightarrow (A,Z+2) + 2e$ -

 $(v = \overline{v})$

- effective neutrino mass
- determination of neutrino mass hierachy

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Sensitivity

GERDA experiment

LNGS underground laboratory:

- located 150 km from Rome, Italyaccess via highway tunneloverburden: 1400 m of rock

- reduction of μ -flux > 10⁶

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Setup

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Phase I diodes

Bare diodes are operated in LAr

- p-type, coaxial
 low mass holder

8 diodes (HdM, IGEX)

- isotopically enriched (86%)
- total mass of 17.66 kg
- 6 diodes (Genius-TF)
 - ^{nat}Ge detectors
 - 15.60 kg

All diodes reprocessed and tested they work stable in LAr FWHM (1.33MeV) ~ 2.5 keV

Event signature

Multi site events by Compton scattering

Single site events by photoelectric effect, electrons $(0v\beta\beta)$

Pulse shape analysis and/or segmentation will be used in Phase II for background rejection

Phase II diodes

Two types of detectors for phase II under discussion

18-fold segmented n-type

- 37.5 kg of 86% ^{enr}GeO₂ reduced to Ge metal of 6N grade
- 84 kg of deplGeO₂ (same chemical history) used to test production procedure

First deplBEGe detectors are working in test stand

Muon veto

Water Cherenkov veto with 66 PMT + plastic scintillator panels high reflectivity foil (VM2000)

Efficiency of 99.56 %

Background by muons

- without moun veto: 10⁻³ cts/(keV kg y) with muon veto: 10⁻⁵ cts/(keV kg y)

Water tank after installation of muon veto (August 2009)

Licht

Status

June '10:

Commissioning run with ^{nat}Ge detector string, GERDA is ready for phase I:

One month run with ^{nat}Ge detector string to measure:

- background
- stability (weekly calibration with ²²⁸Th source)

Subsequently

operation of enriched detector strings

Status

June '10:

Commissioning run with ^{nat}Ge detector string, GERDA is ready for phase I:

One month run with ^{nat}Ge detector string to measure:

- background
- stability (weekly calibration with ²²⁸Th source)

Subsequently

Neutrinoless double beta decay experiments will answer:

- Majorana or Dirac nature of the neutrino
- half-life of $0\nu\beta\beta \Rightarrow$ effective neutrino mass

GERDA

Phase I

- all detectors for phase I ready
- successful operation of bare HPGe detectors in LAr
- within 1 year of data taking KKDC-claim will be confirmed/ruled out
- first test run started in June 2010
- enriched diodes will be submerged into the cryostat after test run

Phase II

- more enriched germanium for new detectors purified
- R&D for active anti-coincidence veto in LAr

UNIWERSYTET **GERDA** Collaboration Meeting Jagiellonian University in Kraków, 18th-20th February 2008

H. Aghaei^m, M. Agostini^f, M. Allardt^c, A.M. Bakalyarov^l, M. Balata^a, I. Barabanov^j, M. Barnabe-Heider^f, L. Baudis^q, C. Bauer^f, N. Becerici-Schmid^m, E. Bellotti^{g,h}, S. Belogurov^{k,j}, S.T. Belyaev^l, A. Bettini^{n,o}, L. Bezrukov^j, V. Brudanin^d, R. Brugnera^{*n,o*}, D. Budjas^{*f*}, A. Caldwell^{*m*}, C. Cattadori^{*g,h*}, F. Cossavella^{*m*}, E.V. Demidova^k, A. Denisiv^j, A. Di Vacri^a, A. Domula^c, A. D'Andragora^a, V. Egorov^{*d*}, A. Ferella^{*q*}, K. Freund^{*p*}, F. Froborg^{*q*}, N. Frodyma^{*b*}, A. Gangapshev^{*j*}, A. Garfagnini^{n,o}, S. Gazzano^{f,a}, R. Gonzalea de Orduna^e, P. Grabmayr^p, K.N. Gusev^{*l,d*}, V. Gutentsov^{*j*}, W. Hampel^{*f*}, M. Heisel^{*f*}, S. Hemmer^{*m*}, G. Heusser^{*f*}, W. Hofmann^f, M. Hult^e, L.V. Inzhechik^j, J. Janicsko^m, J. Jochum^p, M. Junker^a, S. Kionanovsky^j, I.V. Kirpichnikov^k, A. Klimenko^{d,j}, M. Knapp^p, K-T. Knoepfle^f, O. Kochetov^d, V.N. Kornoukhov^{k,j}, V. Kusminov^j, M. Laubenstein^a, V.I. Lebedev^l, B. Lehnert^c, D. Lenz^m, S. Lindemann^f, M. Lindner^f, I. Lippi^o, X. Liu^m, B. Lubsandorzhiev^j, B. Majorovits^m, G. Meierhofer^p, I. Nemchenok^d, L. Pandola^a K. Pelczar^b, F. Potenza^a, A. Pulliaⁱ, S. Riboldiⁱ, F. Ritter^p, C. Rossi Alvarez^o, **R.** Santorelli^{*q*}, J. Schreiner^{*f*}, B. Schwingenheuer^{*f*}, S. Schönert^{*f*}, M. Shirchenko^{*l,d*} H. Simgen f, A. Smolnikov d^{j} , L. Stanco^o, F. Stelzer^m, M. Tarka^q, A.V. Tikhomirov^l, C.A. Ur^o, A.A. Vasenko^k, A. Vauth^m, O. Volynets^m, M. Weber^f, M. Wojcik^b, E. Yanovich^j, S.V. Zhukov^l, D. Zinatulina^d, F. Zoccaⁱ, K. Zuber^c, G. Zuzel^b,

^a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy ^b) Institute of Physics, Jagellonian University, Cracow, Poland ^c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany ^d) Joint Institute for Nuclear Research, Dubna, Russia ^e) Institute for Reference Materials and Measurements, Geel, Belgium ^f) Max Planck Institut für Kernphysik, Heidelberg, Germany ^g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy ^h) INFN Milano Bicocca, Milano, Italy ⁱ) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy ^j) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ^k) Institute for Theoretical and Experimental Physics, Moscow, Russia ¹) Russian Research Center Kurchatov Institute, Moscow, Russia ^m) Max-Planck-Institut für Physik, München, Germany ⁿ) Dipartimento di Fisica dell'Università di Padova, Padova, Italy ^o) INFN Padova, Padova, Italy ^p) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany ^q) Physik Institut der Universität Zürich, Zürich, Switzerland

AGIELLOŃSKI

W KRAKOWIE

Phase II diodes

Two types of detectors for phase II under discussion

18-fold segmented n-type

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Why ⁷⁶Ge

- + Ge as source and detector
- + HPGe detector technologies well established
- + Industrial techniques and facilities available to enrich from 7% to ~88%
- + Good energy resolution: FWHM ~3 keV at 2039 keV (0.16%)
- + Pulse-shape analysis

Limits for 0vßß decay

Heidelberg-Moscow experiment (⁷⁶Ge):

background level ~0.1 cts/(keV kg y) $T_{1/2} \ge 1.9 \times 10^{25} \text{ y (90\% C.L.)}$ 35.5 kg y *Eur. Phys. J. A12, 147-154 (2001)*

part of collaboration claims a signal Mod. Phys. Lett. A16 2409-2420 (2001), NIM A 522 (2004) 371-406

IGEX (⁷⁶Ge):

$$T_{1/2} \ge 1.57 \times 10^{25} \text{ y} (90\% \text{ C.L.}) = 8.87 \text{ kg} \text{ y}$$

NP B (Proc.Suppl.) 87 (2000) 278

Cuoricino (TeO₂ bolometers): $T_{1/2} \ge 3.0 \times 10^{24} \text{ y} (90\% \text{ C.L.})$ 11.83 kg y Phys. Rev. C 78 (2008) 035502

Long-term stability of phase I detectors in LAr/LN₂

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Status

- Summer/autumn '09: Integration test of Phase I detector string, FE, lock, DAQ
- Nov/Dec.'09: Liquid argon filling
- Apr/May'10: Installation of 1-string lock in the GERDA cleanroom
- May '10: Employment of FE & detector mock-up, followed by first employment of a non-enriched detector
- June '10: Water tank filling
- June '10: Commissioning run with ^{nat}Ge detector string GERDA is ready for phase I:

One month run with ^{nat}Ge detector string to measure:

- background
- stability (weekly calibration with ²²⁸Th source)

Subsequently

operation of enriched detector strings

Status

