The GERDA Experiment at Gran Sasso Grzegorz Zuzel Institute of Physics, Jagellonian University, Cracow, Poland on behalf of the GERDA Collaboration #### **Outlook** - Goals of GERDA - Design of the experiment - Present status - Future plans and conclusions GERDA's goals Deign Present status Conclusions #### **Goals of GERDA** - GERDA (<u>GER</u>manium <u>Detector Array</u>) has been designed to investigate neutrino-less double beta decay of ⁷⁶Ge - Ge mono-crystals are very pure - Ge detectors have excellent energy resolution - Detector = source - Enrichment required (7.4 % \rightarrow 86 %) - Background level: $10^{-2} 10^{-3}$ cts/(kg keV y) - Realization in phases: - Phase I: 17.8 kg (8 diodes) of ⁷⁶Ge from HdM & IGEX experiments available - Phase II: adding new detectors (37.5 kg of enriched material in hand, two technologies pursued: n-type segmented or p-type BEGe detectors) - Phase III: world-wide collaboration, O(500 kg) of ⁷⁶Ge #### **Sensitivities** GERDA's goals Deign Present status Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland #### **Sensitivities** GERDA's goals Deign Present status Conclusions Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland # **Design of the experiment** GERDA's goals Deign Present status Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland # **Cryostat** GERDA's goals Deign Present status Conclusions $V = 65 \text{ m}^3$ Heat load: 200 W Active cooling with LN Internal copper shield #### **Detailed radio assay** - Construction materials - ²²²Rn emnation Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland # **Cryostat** GERDA's goals Deign Present status Conclusions $V = 65 \text{ m}^3$ Heat load: 200 W Active cooling with LN Internal copper shield #### **Detailed radio assay** - Construction materials - ²²²Rn emnation Rn shroud of 30 µm copper Ø 0.8m, 3m height to prevent convective transport of Rn from walls/copper to Ge diodes $B \sim 1.5 \cdot 10^{-4} \text{ cts} / (\text{keV} \cdot \text{kg} \cdot \text{y})$ Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland # **Unloading of cryostat** GERDA's goals Deign Present status Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland ### **Construction of water tank** GERDA's goals Deign Present status Conclusions Water tank: Ø 10 m $h = 9.5 \, m$ $V = 650 \text{ m}^3$ Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland ### **Construction of clean room** GERDA's goals Deign Present status Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland # Muon veto in water tank GERDA's goals Deign Present status Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland GERDA's goals Deign Present status - GERDA construction completed in the LNGS Hall A - Integration test of the Phase I detector string, FE electronics, active cooling, commissioning lock and Phase I DAQ successfully completed - Filling with LAr completed - All Phase I detectors (8 diodes, 17.8 kg) refurbished and ready - Enriched/depleted material for phase II detectors in hand, tests of n-type segmented and p-type unsegmented BEGe detectors ongoing - Low background test stand LArGe installed (investigation of new background reduction techniques) GERDA's goals Deign Present status - GERDA moving from construction phase to commissioning & operational mode - Water filling to be started in Feb 2010 - Deployment of the first non-enriched detector string in Feb/March 2010, preparations for the enriched detectors deployment - Down selection of the Phase II detectors in summer 2010, production in 2011 - Very close collaboration with the Majorana project (exchange information, development of MaGe) - CERN Council: GERDA nominated as European Strategy Project M. Allardt ^c, A.M. Bakalyarov ^l, M. Balata ^a, I. Barabanov ^j, M. Barnabe-Heider ^f, L. Baudis ^q, C. Bauer ^f, N. Becerici-Schmid ^m, E. Bellotti ^{g,h}, S. Belogurov ^{k,j}, S.T. Belyaev ^l, A. Bettini ^{n,o}, L. Bezrukov ^j, V. Brudanin ^d, R. Brugnera ^{n,o}, D. Budjas ^f, A. Caldwell ^m, C. Cattadori ^{g,h}, F. Cossavella ^m, E.V. Demidova ^k, A. Denisiv ^j, A. Di Vacri ^a, A. Domula ^c, A. D'Andragora ^a, V. Egorov ^d, A. Ferella ^q, K. Freund ^p, F. Froborg ^q, N. Frodyma ^b, A. Gangapshev ^j, A. Garfagnini ^{n,o}, R. Gonzalea de Orduna ^e, P. Grabmayr ^p, G.Y. Grigoriev ^l, K.N. Gusev ^{l,d}, V. Gutentsov ^j, W. Hampel ^f, M. Heisel ^f, S. Hemmer ^m, G. Heusser ^f, W. Hofmann ^f, M. Hult ^e, L. Iannucci ^a, L.V. Inzhechik ^l, J. Janicsko ^m, J. Jochum ^p, M. Junker ^a, S. Kionanovsky ^j, I.V. Kirpichnikov ^k, A. Klimenko ^{d,j}, M. Knapp ^p, K-T. Knoepfle ^f, O. Kochetov ^d, V.N. Kornoukhov ^{k,j}, V. Kusminov ^j, M. Laubenstein ^a, V.I. Lebedev ^l, B. Lehnert ^c, D. Lenz ^m, S. Lindemann ^f, M. Lindner ^f, I. Lippi ^o, X. Liu ^m, B. Lubsandorzhiev ^j, B. Majorovits ^m, G. Marissens ^e, G. Meierhofer ^p, I. Nemchenok ^d, S. Nisi ^a, L. Pandola ^a, K. Pelczar ^b, F. Potenza ^a, A. Pullia ⁱ, S. Riboldi ⁱ, F. Ritter ^p, C. Rossi Alvarez ^o # GERDA collaboration excited to start-up · / Max I lanex institut fur ixemphysix, freidelberg, dermany g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy h) INFN Milano Bicocca, Milano, Italy - i) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy - $^{j})$ Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia - k) Institute for Theoretical and Experimental Physics, Moscow, Russia - ^l) Russian Research Center Kurchatov Institute, Moscow, Russia - ^m) Max-Planck-Institut f¨ur Physik, M¨unchen, Germany - ⁿ) Dipartimento di Fisica dell'Università di Padova, Padova, Italy o) INFN Padova, Padova, Italy - p) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany q) Physik Institut der Universität Zürich, Zürich, Switzerland ~ 95 physicists from 17 institutions o Cracow, Potana