

The GERDA Experiment at Gran Sasso

Grzegorz Zuzel

Institute of Physics, Jagellonian University, Cracow, Poland

on behalf of the GERDA Collaboration

Outlook

- Goals of GERDA
- Design of the experiment
- Present status
- Future plans and conclusions

GERDA's goals

Deign

Present status

Conclusions

Goals of GERDA

- GERDA (<u>GER</u>manium <u>Detector Array</u>) has been designed to investigate neutrino-less double beta decay of ⁷⁶Ge
 - Ge mono-crystals are very pure
 - Ge detectors have excellent energy resolution
 - Detector = source
 - Enrichment required (7.4 % \rightarrow 86 %)
- Background level: $10^{-2} 10^{-3}$ cts/(kg keV y)
- Realization in phases:
 - Phase I: 17.8 kg (8 diodes) of ⁷⁶Ge from HdM & IGEX experiments available
 - Phase II: adding new detectors (37.5 kg of enriched material in hand, two technologies pursued: n-type segmented or p-type BEGe detectors)
 - Phase III: world-wide collaboration, O(500 kg) of ⁷⁶Ge

Sensitivities

GERDA's goals

Deign

Present status

Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland

Sensitivities

GERDA's goals

Deign

Present status

Conclusions

Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland

Design of the experiment

GERDA's goals

Deign

Present status

Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland

Cryostat

GERDA's goals

Deign

Present status

Conclusions

 $V = 65 \text{ m}^3$

Heat load: 200 W Active cooling with LN

Internal copper shield

Detailed radio assay

- Construction materials
- ²²²Rn emnation

Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland

Cryostat

GERDA's goals

Deign

Present status

Conclusions

 $V = 65 \text{ m}^3$

Heat load: 200 W Active cooling with LN

Internal copper shield

Detailed radio assay

- Construction materials
- ²²²Rn emnation

Rn shroud of 30 µm copper Ø 0.8m, 3m height to prevent convective transport of Rn from walls/copper to Ge diodes

 $B \sim 1.5 \cdot 10^{-4} \text{ cts} / (\text{keV} \cdot \text{kg} \cdot \text{y})$

Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland

Unloading of cryostat

GERDA's goals

Deign

Present status

Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland

Construction of water tank

GERDA's goals

Deign

Present status

Conclusions

Water tank:

Ø 10 m

 $h = 9.5 \, m$

 $V = 650 \text{ m}^3$

Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland

Construction of clean room

GERDA's goals

Deign

Present status

Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland

Muon veto in water tank

GERDA's goals

Deign

Present status

Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC 05-08.01.2010 Cracow, Poland

GERDA's goals

Deign

Present status

- GERDA construction completed in the LNGS Hall A
- Integration test of the Phase I detector string, FE electronics, active cooling, commissioning lock and Phase I DAQ successfully completed
- Filling with LAr completed
- All Phase I detectors (8 diodes, 17.8 kg) refurbished and ready
- Enriched/depleted material for phase II detectors in hand, tests of n-type segmented and p-type unsegmented BEGe detectors ongoing
- Low background test stand LArGe installed (investigation of new background reduction techniques)

GERDA's goals

Deign

Present status

- GERDA moving from construction phase to commissioning & operational mode
- Water filling to be started in Feb 2010
- Deployment of the first non-enriched detector string in Feb/March 2010, preparations for the enriched detectors deployment
- Down selection of the Phase II detectors in summer 2010, production in 2011
- Very close collaboration with the Majorana project (exchange information, development of MaGe)
- CERN Council: GERDA nominated as European Strategy Project

M. Allardt ^c, A.M. Bakalyarov ^l, M. Balata ^a, I. Barabanov ^j, M. Barnabe-Heider ^f, L. Baudis ^q, C. Bauer ^f, N. Becerici-Schmid ^m, E. Bellotti ^{g,h}, S. Belogurov ^{k,j}, S.T. Belyaev ^l, A. Bettini ^{n,o}, L. Bezrukov ^j, V. Brudanin ^d, R. Brugnera ^{n,o}, D. Budjas ^f, A. Caldwell ^m, C. Cattadori ^{g,h}, F. Cossavella ^m, E.V. Demidova ^k, A. Denisiv ^j, A. Di Vacri ^a, A. Domula ^c, A. D'Andragora ^a, V. Egorov ^d, A. Ferella ^q, K. Freund ^p, F. Froborg ^q, N. Frodyma ^b, A. Gangapshev ^j, A. Garfagnini ^{n,o}, R. Gonzalea de Orduna ^e, P. Grabmayr ^p, G.Y. Grigoriev ^l, K.N. Gusev ^{l,d}, V. Gutentsov ^j, W. Hampel ^f, M. Heisel ^f, S. Hemmer ^m, G. Heusser ^f, W. Hofmann ^f, M. Hult ^e, L. Iannucci ^a, L.V. Inzhechik ^l, J. Janicsko ^m, J. Jochum ^p, M. Junker ^a, S. Kionanovsky ^j, I.V. Kirpichnikov ^k, A. Klimenko ^{d,j}, M. Knapp ^p, K-T. Knoepfle ^f, O. Kochetov ^d, V.N. Kornoukhov ^{k,j}, V. Kusminov ^j, M. Laubenstein ^a, V.I. Lebedev ^l, B. Lehnert ^c, D. Lenz ^m, S. Lindemann ^f, M. Lindner ^f, I. Lippi ^o, X. Liu ^m, B. Lubsandorzhiev ^j, B. Majorovits ^m, G. Marissens ^e, G. Meierhofer ^p, I. Nemchenok ^d, S. Nisi ^a, L. Pandola ^a, K. Pelczar ^b, F. Potenza ^a, A. Pullia ⁱ, S. Riboldi ⁱ, F. Ritter ^p, C. Rossi Alvarez ^o

GERDA collaboration excited to start-up

· / Max I lanex institut fur ixemphysix, freidelberg, dermany

g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy
h) INFN Milano Bicocca, Milano, Italy

- i) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy
- $^{j})$ Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
 - k) Institute for Theoretical and Experimental Physics, Moscow, Russia
 - ^l) Russian Research Center Kurchatov Institute, Moscow, Russia
 - ^m) Max-Planck-Institut f¨ur Physik, M¨unchen, Germany
 - ⁿ) Dipartimento di Fisica dell'Università di Padova, Padova, Italy
 o) INFN Padova, Padova, Italy
- p) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany q) Physik Institut der Universität Zürich, Zürich, Switzerland

~ 95 physicists from 17 institutions

o Cracow, Potana