

bmb+**f** - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Background by Neutron Activation in GERDA

Georg Meierhofer

people involved:

P. Grabmayr J. Jochum

P. Kudejova L. Canella

J. Jolie

IKP, Universität zu Köln

Kepler Center for Astro and Particle Physics University Tübingen

Kepler Center for Astro and Particle Physics

Eberhard Karls Universität Tübingen

Outline

- Motivated by Neutrinoless double beta decay experiments GERDA)
- Neutron capture and decay processes on ⁷⁶Ge
- Background by neutron capture on ⁷⁶Ge

- Measurements with cold neutrons @ FRM II
 - Cross section of the ⁷⁴Ge(n, γ) and ⁷⁶Ge(n, γ) reactions
 - Prompt γ-ray spectrum in ⁷⁵Ge and ⁷⁷Ge
- Summary

Double beta decay $(2\nu\beta\beta)$

- Double beta decay $(2v\beta\beta)$ can be observed if single beta decay is energetically forbidden, but the transition of two neutrons into two protons (or pp -> nn) is allowed. The nucleus emits two electrons (positrons) and two anti-neutrinos (neutrinos).
- 2vββ was observed in 11 isotopes: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te,
 ¹⁵⁰Nd, ²³⁸U, ¹³⁰Ba (β⁺β⁺)

GERDA: The GERmanium Detector Array

- + Isotope: 76 Ge (Q_{BB} = 2039 keV)
 - Phase I: ~18 kg of ⁷⁶Ge
 - Phase II: ~40 kg of ⁷⁶Ge
- + Location: LNGS, Gran Sasso, Italy

+

+

 + Design: Bare HPGe detectors (~86% ⁷⁶Ge) submerged into LAr. LAr acts as cooling liquid and γ-ray shield. Cerenkov muon veto (water tank with Ø=10 m) high Z-materials used, 3400 m.w.e. of rock to shield cosmic radiation

no

Background in GERDA

Radiopurity of: Germanium detector (cosmogenic ⁶⁸Ge) Germanium detector (cosmogenic ⁶⁰Co) Germanium detector (bulk) Germanium detector (surface) Cabling Copper holder Electronics Cryogenic liquid Infrastructure

Sources: Natural activity of rock Muons and neutrons

- \Box < 10⁻² cts/(kev kg y) (Phase I)
- \sim < 10⁻³ cts/(kev kg y) (Phase II)

Background in GERDA

Radiopurity of: Germanium detector (cosmogenic ⁶⁸Ge) Germanium detector (cosmogenic ⁶⁰Co) Germanium detector (bulk) Germanium detector (surface) Cabling Copper holder Electronics Cryogenic liquid Infrastructure

Sources:

neutrons produced by cosmic muons can propagate through the water tank and LAr to the Ge-diodes. Muons and neutrons

Neutron Capture by ⁷⁶Ge

Neutron Capture by ⁷⁶Ge

Prompt transitions in ⁷⁷Ge

Nuclear Data Sheets 81

PGAA @ FRM II

(Prompt Gamma-ray Activation Analysis)

Beam

 $\sim 3 \times 10^9 n_{th}/(cm^2 s^1)$ $<\lambda_n > = 6.7 \text{ Å (cold)}$ $<E_n > = 1.83 \text{ meV}$

Detectors

2 HPGe with Compton suppresion Li/Cd/Pb shielding

Thermal n-capture cross section

Thermal n-capture cross section

Results ⁷⁶Ge(n,γ)

cross section [mbarn]								
σ(⁷⁷ Ge total)	$\sigma(^{77}\text{Ge direct})$	σ(^{77m} Ge)						
Seren (1947) : 85 ± 17 Pomerance (1952) : 350 ± 70 Brooksbank (1955) : 300 ± 60 Metosian (1957) : 76 ± 15 Lyon (1957) : 43 ± 2	Lyon (1957): 6 ± 5	Metosian(1957): 87 ± 15 Lyon(1957): 137 ± 15 Wigmann(1962): 120 ± 20 Mannhart(1968): 86 ± 9						
New value (2009): 68.8 ± 3.4 G. Meierhofer et al., EPJA 40, 61 (2009)	46.9 ± 4.7	115 ± 16						
		relativly large uncertainties due to branching ratio						

cross section [mbarn]							
σ(⁷⁵ Ge total)	$\sigma(^{75}\text{Ge direct})$	σ(^{75m} Ge)					
Seren (1947): 380 ± 76 Pomerance (1952): 600 ± 60							
Lyon (1960): 550 ± 55	Metosian (1957): 180 ± 40	Metosian (1957): 40 ± 8 Wigmann (1962): 200 ± 20					
Koester (1987): 400 ± 200		Mannhart (1968): 143 ± 16					
New value (2010): 497 ± 52 G. Meierhofer et al., PRC 81, 027603 (2010)	365 ± 51	130.5 ± 5.6					
relativly large uncertainties due to emission probabilities							

Prompt γ-spectra (preliminary)

Example 5049 keV

Decay scheme in ⁷⁷Ge (preliminary)

Summary

- Neutron capture on ⁷⁶Ge will produce background in GERDA (prompt cascade and delayed decay of ⁷⁷Ge). The prompt cascade has to be well known to veto the delayed decay of ⁷⁷Ge.
- The cross sections of the ⁷⁶Ge(n,γ) and ⁷⁴Ge(n,γ) reactions were measured by the activation method.
 - Values of higher reliability obtained
- The prompt gamma-ray spectrum in ⁷⁷Ge and ⁷⁵Ge were measured and the level schemes reconstructed.
 - about 60% of emitted energy found
- Data will be used for further MC-simulations

Energy weighted intensities

Neutron Capture by ⁷⁶Ge

- In GSTR-06-012 Luciano discussed this problem:
- •
- Production rate: 0.5 1 nuclei/kg/y (LAr)
- Counts in ROI due to β-particles
 - ⁷⁷Ge: 8 x 10⁻⁵ counts/keV/decay (can be reduced by factor of 3 by anti-coincidence).
- ^{77m}Ge: 2.1 x 10⁻⁴ counts/keV/decay (small reduction due to direct transition to ground state)
- Rejection strategy for β -particles from ^{77m}Ge: $t_{1/2}$ ^{(77m}Ge)=52.9s \rightarrow dead time 4min (ϵ_{dec} = 0.96)
- 1. Trigger on muon veto (rate: 2.5 per min.).
 - 2. not feasible

3.

4. 2. Trigger on muon veto & prompt gamma-rays (after neutron capture) in HPGe (9 events/day).

5.
$$\varepsilon = \varepsilon_{mv} \times \varepsilon_{Ge} \times \varepsilon_{dec}$$

favoured

6. ε = 0.95 x 0.56 x 0.96 = 0.51 Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen DPG Frühjahrstagung 2010, Bonn, 15.03.2010

Neutron Capture by ⁷⁴Ge

6505 1/2+ after neutron capture $S_n = 6505 \text{ keV}$ $E_{max}(\beta \text{ delayed}) = 1177 \text{ keV}$ $E_{max}(\gamma \text{ delayed}) = 618 \text{ keV}$ 139 7/2 0 1/2β ⁷⁵Ge E [keV] Jπ 264.6 Half-life times 198.6 0 1/2^{75m}Ge: $t_{1/2}$ = 47.7 s ⁷⁵As E [keV] Jπ stable ⁷⁵Ge: t_{1/2} = 82.78 h

Emission probabilities

Decay scheme in ⁷⁵Ge (preliminary)

PGAA @ FRM II

(Prompt Gamma-ray Activation Analysis)

Beam

 $\sim 3 \times 10^9 n_{th}/(cm^2 s^1)$ $<\lambda_n > = 6.7 \text{ Å (cold)}$ $<E_n > = 1.83 \text{ meV}$

Detectors

2 HPGe with Compton suppresion Li/Cd/Pb shielding

<. Einh.]

Inte

Prompt Gamma-ray Activation Analysis

PGAA/PGAI/NT

Other techniques: Prompt Gamma-ray Activation Imaging, Neutron Tomography

Abundances in depleted GeO₂

Ge-isotope	70	72	73	74	76		
	averaged over all samples						
Certificate	21.50	29.90	8.45	38.92	0.57		
LNGS 2	20.40	30.39	8.80	39.77	0.64		
Moscow	22.74	30.05	8.30	38.42	0.60		
Geel INAA	22.44	29.65	8.32	39.05	0.54		
Geel k0-NAA	22.44	29.65	8.32	39.06	0.53		
Tübingen	22.66	29.56	8.35	38.85	0.–		
total avera	22.03	29.87	8.42	39.02	0.58		
previous	22.8	30.1	8.31	38.3	0.60		

For detection of ⁷⁶Ge PGAA is not competitive because

Thermal n-capture cross section

Neutron Capture by ⁷⁶Ge

- In GSTR-06-012 Luciano discussed this problem:
- •
- Production rate: 0.5 1 nuclei/kg/y (LAr)
- Counts in ROI due to β-particles
 - ⁷⁷Ge: 8 x 10⁻⁵ counts/keV/decay (can be reduced by factor of 3 by anti-coincidence).
- ^{77m}Ge: 2.1 x 10⁻⁴ counts/keV/decay (small reduction due to direct transition to ground state)
- Rejection strategy for β -particles from ^{77m}Ge: $t_{1/2}$ (^{77m}Ge)=52.9s \rightarrow **dead time 4min** ($\epsilon_{dec} = 0.96$)
- 1. Trigger on muon veto (rate: 2.5 per min.).
 - 2. not feasible

4. 2. Trigger on muon veto & prompt gamma-rays (after neutron capture) in HPGe (9 events/day).

5.
$$\varepsilon = \varepsilon_{mv} \times \varepsilon_{Ge} \times \varepsilon_{dec}$$

6. $\varepsilon = 0.95 \times 0.56 \times 0.96 = 0.51$

8. Trigger on energy deposition of >4 MeV (above natural radioactivity) in HPGe.

lower efficiency than strategy 2.

Prompt γ-spectrum in ⁷⁷Ge

ring spectra with different isotopical composition allows to determine unambiguously the transitions in

Analysis

Cross Section

$$\sigma_{Ge}(\lambda) = \frac{A_{Ge} * \left(I_{(Au,\gamma)} * n_{Au}(r) * \Phi(r)\right)}{A_{Au} * \left(I_{(Ge,\gamma)} * n_{Ge}(r) * \Phi(r)\right)}_{Au}$$
$$\sigma_{0,Ge} = \frac{\left(A_{Ge} * I_{(Au,\gamma)} * n_{Au}\right)}{\left(A_{Au} * I_{(Ge,\gamma)} * n_{Ge}\right)}_{0,Au}$$

