LAr Scintillation light readout with Silicon Photomultipliers

Allen Caldwell, Béla Majorovits, Xiang Liu, József Janicskó Csathy, *Hossein Aghaei-Khozani

Outline

- Introduction
- SiPMs, a candidate for LAr scintillation light readout?
- Characterization of SiPM at cryogenic temperatures
- Summary and outlook

GERmanium Detector Array (GERDA)

Is a double beta decay experiment in the underground laboratory LNGS, Italy

- Enriched germanium is serving as source and detector at the same time.
- Extremely long half life \rightarrow extremely low background
- Bare HPGe detectors are operated in LN/LAr

- LAr is: { 1. cooling liquid 2. passive shielding 3. scintillator

Could we use LAr scintillation light to build an active veto in a low background experiment like GERDA?

GERDA

Motivation of a LAr veto

The $0\nu\beta\beta$ (2n \rightarrow 2p + 2e) decay is a single site event.

Segmented detectors can identify multi site events as background. However if singly Compton scattered gamma escapes detector no identification as background is possible.

 $0\nu\beta\beta$ decay Q-value = 2.039MeV. In principal all γ sources with a higher energy are dangerous.

 208 Tl e.g. from the decay chain of natural 232 Th emits γ with an energy of 2.614MeV.

Detecting scintillation light in LAr from Compton scattered gammas could increase background identification efficiency.

March 17, 2010

Heidelberg setup

The GERDA group from MPIK in Heidelberg accomplished background suppression via LAr scintillation light read out with PMTs.(2008JINST 3 P08007)

A background suppression of a factor of ten observed by the Heidelberg Group motivated our studies.

March 17, 2010

Our goal

PMTs weigh about one kilogram. Their radioactivity is high \rightarrow Our goal is to replace conventional PMTs by SiPMs

Silicon Photo Multiplier characteristics:

- Very small devices (mass of some mg). We expect a much lower radioactivity.
- They do work at cryogenic temperatures
- Do not require HV (HV can lead to problems in Ar atmosphere)
- UV sensitive. Peak is at 400nm
- High photon detection efficiency (PDE) of up to 65%
- Relatively cheap

So what is a SiPM?

Take a couple of APDs in Geiger mode...

This is what a SiPM chip looks like

... and arrange them in an array

The number of fired pixels will tell how many photons were detected. Outstanding 1p.e resolution!

SiPM properties at cryogenic temperature

- Equipment and experimental setup.
- Pulse shape in LN.
- Gain as a function of temperature and bias.
- Dark rate as a function of temperature.

Hamamatsu's MPPC

We tested three different SiPMs. The following specifications were given by Hamamatsu.

Number of pixels	100	400	1600
Pixel size	$100\mu\mathrm{m} imes100\mu\mathrm{m}$	$50\mu\mathrm{m} imes50\mu\mathrm{m}$	$25\mu m imes 25\mu m$
PDE at peak value	65%	50%	25%
Dark count at RT	600-1000 kHz	400-800 kHz	300 - 600 kHz
Gain at RT	2.75×10^{6}	$7.5 imes10^5$	$2.4 imes10^5$

Setup

- Bias circuit and preamplifier built on one printed circuit board at room temperature
- SiPM is submerged in LN
- coax. cable between the SiPM and the PCB

Dewar temperature gradient PT100 SiPM

- Gas tight dewar filled with LN
- LN evaporates slowly
 - \rightarrow temperature increases continuously
- PT100 for temperature readout

Pulse shape in LN

The decay time increases at low temperatures by a factor of 6.

The quenching resistor is temperature dependent. Slow component from RC-circuit. Sharp peak from parasitic capacitances.

Gain v. temperature and bias

Does the gain drop with decreasing temperatures?

The gain is not a function of the temperature but strongly depends on V_{bias} . We have to reduce the bias at low temperatures to operate at constant gain.

Breakdown voltage v. temperature

 $V_{bias} = V_{bd} + V_{over}$

 V_{bd} is the minimum bias required to operate a SiPM in Geiger mode. Gain(V_{bd})=0 \rightarrow V_{over} defines the gain.

 $V_{bd} = V_{bd}(T)$ \rightarrow To operate at constant overvoltage we have to reduce the bias. March 17, 2010

Dark rate v. temperature

A nice property of SiPMs is the dark rate reduction at low temperatures.

Up to 6 orders of magnitude reduction in dark rate. \implies Excellent candidate for low count rate experiments!

The crosstalk can be derived from the ratio of dark rate with 0.5 and 1.5 p.e threshold. It is not temperature dependent.

- SiPMs are appropriate detection devices for LAr scintillation light read out
- We know how they work at cryogenic temperatures. By cooling we can reduce the dark counts significantly without any loss of gain.

...and outlook

- Proof of principle experiment using SiPMs and WLS-fibre to read out LAr scintillation light has been accomplished. First results look very promising.
- Now we are building an improved setup.
- MC simulations for a GERDA like experiment with LAr veto will be done.

Thank you for your attention

Correction curves

There is the problem of nonlinearity as more than one photon can hit the same pixel at once

 \rightarrow However correction curves exist.

$$N_{fired} = N_{pix} (1 - e^{-N_{pe}/N_{pix}}) (1 + p e^{-N_{pe}/N_{pix}})$$

 N_{pix} number of pixels p cross talk probability $N_{pe} = N_{photons} \times Q.E.$

Photon Detection Efficiency

- APD QE peak 70% is a typical value
- Fill factor is 78.5, 61.5, 30.8 for the 100, 400, 1600 pixel MPPC's

