

The search for neutrino-less double beta decay ($0\nu\beta\beta$)

Stefan Schönert Max-Planck-Institut für Kernphysik Heidelberg

Outline

- $0\nu\beta\beta$ decay and predictions from oscillation experiments
- Comparison of DBD isotopes
- Challenges & experimental approaches
- Overview experimental projects
- Outlook

2νββ Decay

Ground states of even-even nuclei: 0+

0vββ Decay

S. Schö

Phenomenology of 0v- and 2v $\beta\beta$ decay

2νββ: (A,Z) → (A,Z+2) + 2e⁻ + 2
$$\overline{\nu}_{e}$$
 ΔL=0
 $T_{1/2}^{2\nu} = (10^{18} - 10^{21})$ y

0 $\nu\beta\beta$: (A,Z) \rightarrow (A,Z+2) + 2e⁻ Δ L=2

Decay rate and effective neutrino mass

Assume leading term is exchange of light Majorana neutrinos

Expected decay rate:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_{ee} \rangle^2$$

Phase space integral
$$HK 9.7 P.Grabmayr$$

Nuclear matrix element

$$Q = E_{e1} + E_{e2} - 2m_e$$

 $\left\langle m_{ee} \right\rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$

Q-value of decay

Effective neutrino mass

 U_{ei} (complex) neutrino mixing matrix

$0\nu\beta\beta$: physics implications

T.Schwetz-Mangold

1) Dirac vs. Majorana particle: (i.e. its own anti-particle)?

• $0\nu\beta\beta \Rightarrow$ Majorana nature

• Majorana \Rightarrow See-Saw mechanism

$$m_{\nu} = \frac{m_D^2}{M_R} << m_D$$

$$m_3 \sim \left(\Delta m_{atm}^2\right)^{1/2}, \ m_D \sim m_t \Longrightarrow M_R \sim 10^{15} GeV$$

• Majorana \Rightarrow CP violation in $M_{\mathbb{R}} \rightarrow$ higgs + lepton \Rightarrow Leptogenesis \Rightarrow B asymmetry

2) Absolute mass scale:

- Hierarchy: degenerate, inverted or normal
- (effective) neutrino mass

Predictions from oscillation experiments

Predictions from oscillation experiments

But shell model and QRPA calculations still disagree up to a factor 2 for lighter nuclei

New IBM-2 calculations agree (coincide?) with QRPA values! Score 2:1 ? IBM-2 includes deformations for ¹⁵⁰Nd

Is M decreasing with A^{-2/3} (IBM-2, QRPA) or constant with A (SM)?

Comparison of isotopes: Is there a *super-DBD-isotope* ?

Expected $0\nu\beta\beta$ rates per mass vary within a factor ~ 4 !

jahrstagung HK, Bonn 16.3.2010

Experimental sensitivity

Without bkgd:
$$\langle m \rangle \leq \frac{const}{(M T)^{1/2}}$$
 $M T$: exposure [kg y]With bkgd: $\langle m \rangle \leq const \left(\frac{b \Delta E}{M T} \right)^{1/4}$ $at Q_{\beta\beta}$ [cts/kg/keV/year] ΔE : energy resolution

⇒ Maximize number of nuclei under observation ⇒ Minimize background (radioactivity, cosmics) in energy window at $Q_{\beta\beta}$ ("background free")

 \Rightarrow 1 ton of isotopes **AND** b· Δ E <10⁻³ / kg y for 10 meV scale

Two ways to measure $0\nu\beta\beta$ decay Source = Detector Source \neq Detector

State-of-the-art: limits & claim

- •71.7 kg year Bgd 0.11 / (kg y keV)
- 28.75 ± 6.87 events (bgd:~60)
- Claim:4.2 σ evidence for $0\nu\beta\beta$
- (0.69–4.18) x10²⁵ y (3σ)
- Best fit: 1.19 x10²⁵ y (NIMA 522/PLB 586)
- PSA analysis (Mod. Phys. Lett. A21): (2.23 + 0.44 – 0.31)x10²⁵ y (6σ)
- Tuebingen/Bari group (PRD79): m_{ee} /eV = 0.28 [0.17-0.45] 90%CL

Significance and $T_{1/2}$ depend on bgd discription: •Strumia & Vissani Nucl.Phys. B726 (2005) •Chkvorets, PhD dissertation Univ. HD, (2008): using realistic background model \Rightarrow peak significance: 1.3 σ , $\Rightarrow T_{1/2} = 2.2 \times 10^{25} \text{ y}$

State-of-the-art: limits & claim

- •71.7 kg year Bgd 0.11 / (kg y keV)
- 28.75 ± 6.87 events (bgd:~60)
- Claim:4.2 σ evidence for $0\nu\beta\beta$
- (0.69–4.18) x10²⁵ y (3σ)
- Best fit: 1.19 x10²⁵ y (NIMA 522/PLB 586)
- PSA analysis (Mod. Phys. Lett. A21): (2.23 + 0.44 – 0.31)x10²⁵ y (6σ)
- Tuebingen/Bari group (PRD79): m_{ee} /eV = 0.28 [0.17-0.45] 90%CL

Significance and $T_{1/2}$ depend on bgd discription:

- Strumia & Vissani Nucl.Phys. B726 (2005)
- Chkvorets, PhD dissertation Univ. HD, (2008): using realistic background model
- \Rightarrow peak significance reduced to 1.3 $\sigma,$

 $\Rightarrow T_{1/2} = 2.2 \times 10^{25} \text{ y}$

Name	Nucleus	Mass*	Method	Location	Time line			
	Running 8	recently con	npleted experim	ents				
CUORICINO	Te-130	11 kg	bolometric	LNGS	2003-2008			
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010			
		Constructior	n funding					
CUORE	Te-130	200 kg	bolometric	LNGS	2012			
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2010 (commis.)			
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (commis.)			
LUCIFER	Se-82 (Mo-100)	18 (11) kg	bolom./scint.	LNGS	2013 (commis.)			
SNO+	Nd-150	Nd-150 56 kg scintillation S		SNOlab	2011			
Substantial R&D funding / prototyping								
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009			
Majorana	Ge-76	26 kg	ionization	SUSL	2012			
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013			
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)			
	R&L) and/or conc	eptual design					
CARVEL	Ca-48		scintillation	Solotvina				
COBRA	Cd-116, Te-130		ionization	LNGS				
DCBA	Nd-150		drift chamber	Kamioka				
EXO gas	Xe-136		gas TPC	SNOlab				
MOON	Mo-100		tracking	Oto				
		Other decay	/ modes					
TGV	Cd-106		ionization	LSM	operational			

*: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90% 10

Γ	Name	Nucleus	Mass*	Method	Location	Time line				
		Running 8	a recently con	npleted experim	ents					
	CUORICINO	Te-130	11 kg	bolometric	LNGS	2003-2008				
	NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010				
	Construction funding									
	CUORE	Te-130	200 kg	bolometric	LNGS	2012				
	EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2010 (commis.)				
	GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (commis.)				
	LUCIFER	Se-82 (Mo-100)	18 (11) kg	bolom./scint.	LNGS	2013 (commis.)				
	SNO+	Nd-150	56 kg	scintillation	SNOlab	2011				
	Substantial R&D funding / prototyping									
	CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009				
	Majorana	Ge-76	26 kg	ionization	SUSL	2012				
	NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013				
	SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)				
		R&L) and/or conc	eptual design						
	CARVEL	Ca-48		scintillation	Solotvina					
	COBRA	Cd-116, Te-130		ionization	LNGS					
	DCBA	Nd-150		drift chamber	Kamioka					
	EXO gas	Xe-136		gas TPC	SNOlab					
	MOON	Mo-100		tracking	Oto					
			Other decay	/ modes						
	TGV	Cd-106		ionization	LSM	operational				

*: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90%

Cryogenic detector Heat sink Thermal coupling Thermometer Incident particle Crystal absorber

Measurement of $\Delta T = E/C$

- 41 kg TeO₂
- nat. abundance of
 ¹³⁰Te: 34%
- active mass: 11 kg of ¹³⁰Te
- New $Q_{\beta\beta}$: 2527.518 ± 0.013 keV (F. Avignone et al 2008) 2527.01± 0.32 keV (R. Norman et al 2008) Δ E: -3 keV

Cuoricino data taking completed,....

 Cuoricino data taking successfully completed in 2008

- Full statistics statistics: 18 kg x year of ¹³⁰Te
- Background at 0vββ: 0.18 ± 0.02 cts/(keV kg y) degraded α's (60%) ext. ²⁰⁸Tl γ's (40%)
- Limit on ¹³⁰Te $0\nu\beta\beta$ decay: T_{1/2} > 2.94x10²⁴ y (90% C.L.) m_{ee}< 0.2 - 0.98 eV

(M. Sisti, Taup 09)

...CUORE construction started..

and LUCIFER is funded!

Name	Nucleus	Mass*	Method	Location	Time line			
	Running 8	a recently con	npleted experim	ents				
CUORICINO	Te-130	11 kg	bolometric	LNGS	2003-2008			
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010			
		Constructior	n funding					
CUORE	Te-130	200 kg	bolometric	LNGS	2012			
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2010 (commis.)			
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (commis.)			
LUCIFER	Se-82 (Mo-100)	18 (11) kg	bolom./scint.	LNGS	2013 (commis.)			
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011			
Substantial R&D funding / prototyping								
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009			
Majorana	Ge-76	26 kg	ionization	SUSL	2012			
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013			
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)			
	R&L	D and/or conc	eptual design					
CARVEL	Ca-48		scintillation	Solotvina				
COBRA	Cd-116, Te-130		ionization	LNGS				
DCBA	Nd-150		drift chamber	Kamioka				
EXO gas	Xe-136		gas TPC	SNOlab				
MOON	Mo-100		tracking	Oto				
		Other decay	/ modes					
TGV	Cd-106		ionization	LSM	operational			

*: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90%

NEMO 3 @ LSM: The ' $2\nu\beta\beta$ factory'...

<u>Source</u>: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells)

Calorimeter:

1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water + Wood

....and its sources

Results from NEMO3's strongest source: ¹⁰⁰Mo

V. Tretyak (Medex'09), also F. Mauger (Taup09)

From NEMO3 to SuperNEMO

NEMO3		SuperNEMO	
T _{1/2} > 1.4 x 10 ²⁴ y <m> < 390 – 810 meV</m>	EXPECTED SENSITIVITY	T _{1/2} > 1 – 1.5 x 10 ²⁶ y <m> < 43 – 145 meV *</m>	
7 kg	Mass of Isotopes	100 – 200 kg	
8 % FWHM @ 3 MeV	Calorimeter Resolution	4 % FWHM @ 3 MeV	
18 %	Efficiency	30 %	
²⁰⁸ TI < 20 μBq / kg ²¹⁴ Bi < 300 μBq / kg	Foils Radiopurity	²⁰⁸ TI < 2 μBq / kg ²¹⁴ Bi < 10 μBq / kg	
NME : E. Caurier et. al., Phys. Re Tübingen Simkovic et al., F Jvvaskvla Suhonen et al. In	v. Lett. 100 (2008) 052503 Phys. Rev. C 77 (2008) 045503 nt. J. Mod. Phys. E 17 (2008) 1	* : for ⁸² Se Baseline: ⁸² Se Alternatives: ¹⁵⁰ Nd ⁴⁸ Ca	

SuperNEMO at the new LSM

- 5 7 kg of $\beta\beta$ isotope per module
- 20 22 modules for the full detector

for 100 – 150 kg of isotope in total • modules surrounded by water shielding

- Location: LSM (France)
- demonstrator
 operational 2011

Name	Nucleus	Mass*	Method	Location	Time line				
	Running &	c recently con	npleted experim	ents					
CUORICINO	Te-130 11 kg bolome		bolometric	LNGS	2003-2008				
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010				
Construction funding									
CUORE	Te-130	200 kg	bolometric	LNGS	2012				
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2010 (commis.)				
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (commis.)				
LUCIFER	Se-82 (Mo-100)	18 (11) kg	bolom./scint.	LNGS	2013 (commis.)				
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011				
	Substantial R&D funding / prototyping								
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009				
Majorana	Ge-76	26 kg	ionization	SUSL	2012				
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013				
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)				
	R&I	D and/or conc	eptual design						
CARVEL	Ca-48		scintillation	Solotvina					
COBRA	Cd-116, Te-130		ionization	LNGS					
DCBA	Nd-150		drift chamber	Kamioka					
EXO gas	Xe-136		gas TPC	SNOlab					
MOON	Mo-100		tracking	Oto					
		Other decay	/ modes						
TGV	Cd-106		ionization	LSM	operational				

HK 9.2 A.Vauth HK 9.3 G. Meierhofer HK 9.6 D. Budjáš HK 9.7 P.Grabmayr HK 9.9 M. Agostini HK 69.8 M. Tarka T 109.5 K. Freund T 109.6 H.Khozani T 110.5 M.Barnabé Heider T 110.6 S.Hemmer T 110.7 F.Froborg T 113.8 M.Heisel

*: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90% 2010

•'Bare' enrGe array in liquid argon •Shield: high-purity liquid Argon / H₂O •Phase I: 18 kg (HdM/IGEX) / 15 kg nat. •Phase II: add ~20 kg new enr. Detectors; total ~40 kg

•Array(s) of ^{enr}Ge housed in high-purity

electroformed copper cryostat Shield: electroformed copper / lead Initial phase: R&D demonstrator module: Total ~60 kg (30 kg enr.)

Physics goals: degenerate mass range **Technology:** study of bgds. and exp. techniques

 open exchange of knowledge & technologies (e.g. MaGe MC) **O** intention to merge for O(1 ton) exp. (inv. Hierarchy) selecting the best technologies tested in GERDA and Majorana

Novel Ge-detectors with advanced $0\nu\beta\beta$ -signal recognition & background suppression

n-type detectors with 18-fold segmented electrodes

HK 9.2 A.Vauth T 110.6 S.Hemmer

- $\mathbf{0}_{\nu\beta\beta}$: point-like events
- **Bgd:** multi-site or partial energy deposition outside crystal

p-type with small signal electrode (thick-window BEGe detector)

HK 9.6 D.Budjáš HK 9.9 M.Agostini

R&D: LAr scintillation read out

T 109.6 H.A.Khozani

T 113.8 M.Heisel,

Unloading of vacuum cryostat (6 March 08)

Produced from selected low-background austenitic steel

Designed for external γ ,n, μ background ~10⁻⁴ cts/(keV kg y)

Ø 10 m H = 9.5 m V = 650 m³

clean room, active cooling device getting prepared for installation

Glove-box for Ge-detector handling and mounting into commissioning lock under N₂ atmosphere installed in clean room

LEDO

- Liquid argon filled in Dec.'09
- Successful commissioning of cryogenic system
- Water tank partially filled
- Installation c-lock in March
- Ready for commissioning run with ^{nat}Ge detector string in April '10
- Subsequently, start Phase I physics data taking

Background requirement for GERDA/Majorana:

⇒Background reduction by factor $10^2 - 10^3$ required w.r. to precursor exps. ⇒Degenerate mass scale $O(10^2 \text{ kg·y}) \Rightarrow$ Inverted mass scale $O(10^3 \text{ kg·y})$

Name	Nucleus	Mass*	Method	Location	Time line		
	Running &	& recently con	npleted experim	ents			
CUORICINO	Te-130	11 kg	bolometric	LNGS	2003-2008		
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010		
Construction funding							
CUORE	Te-130	200 kg	bolometric	LNGS	2012		
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2010 (commis.)		
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (commis.)		
LUCIFER	Se-82 (Mo-100)	18 (11) kg	bolom./scint.	LNGS	2013 (commis.)		
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011		
Substantial R&D funding / prototyping							
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009		
Majorana	Ge-76	26 kg	ionization	SUSL	2012		
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013		
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)		
	R&I	D and/or conc	eptual design				
CARVEL	Ca-48		scintillation	Solotvina			
COBRA	Cd-116, Te-130		ionization	LNGS			
DCBA	Nd-150		drift chamber	Kamioka			
EXO gas	Xe-136		gas TPC	SNOlab			
MOON	Mo-100		tracking	Oto			
		Other decay	/ modes				
TGV	Cd-106		ionization	LSM	operational		

*: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90%

EXO-200: a liquid ¹³⁶Xe TPC

(without ¹³⁶Ba grand-daughter tagging)

Case	Mass (ton)	Eff. (%)	Run Time (yr)	σ _ε /E @ 2.5MeV (%)	Radioactive Background (events)	T _{1/2} ^{0v} (yr, 90%CL)	Majoran (e\ QRPA	a mass /) NSM
EXO-200	0.2	70	2	1.6	40	6.4 x 10 ²⁵	0.133 ¹	0.186 ²

~110 kg ¹³⁶Xe active mass

46 -170 events on top of bgd for KK claim

Ionization & Scintillation: $\sigma(E)/E = 3.0\% @ 570 \text{ keV or } 1.4\% @ Q(\beta\beta)$

L. Kaufmann, Taup09

EXO-200 goes underground...

...and commissioning will start early 2010

Gaseous ¹³⁶Xe TPC R&D

EXO-gas with Ba-tagging

Initial concept: in-situ tagging New concept: Ba++ extraction

(D. Sinclair, Taup 2009)

<u>Advantage:</u> Gas Xe has the potential of providing event topology information along with very good energy resolution

<u>Challenge:</u> low density provides limited self shielding

NEXT high pressure TPCT 110.4 M. Ball(without Ba-tagging) in Canfranc

Name	Nucleus	Mass*	Method	Location	Time line			
	Running &	R recently con	npleted experim	ents				
CUORICINO	Te-130	11 kg	bolometric	LNGS	2003-2008			
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010	•		
	Construction funding							
CUORE	Te-130	200 kg	bolometric	LNGS	2012			
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2010 (commis.)			
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (commis.)			
LUCIFER	Se-82 (Mo-100)	18 (11) kg	bolom./scint.	LNGS	2013 (commis.)			
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011	HK 9.4 P.Schrock		
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009			
Majorana	Ge-76	26 kg	ionization	SUSL	2012			
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013			
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)			
	R&I	D and/or conc	eptual design					
CARVEL	Ca-48		scintillation	Solotvina				
COBRA	Cd-116, Te-130		ionization	LNGS				
DCBA	Nd-150		drift chamber	Kamioka				
EXO gas	Xe-136		gas TPC	SNOlab				
MOON	Mo-100		tracking	Oto				
	·	Other decay	/ modes					
TGV	Cd-106		ionization	LSM	operational			

*: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90%

SNO+

- \$300M of heavy water removed and returned to Atomic Energy of Canada Limited (every last drop)
- SNO detector to be filled with liquid scintillator
 - 50-100 times more light than Cherenkov
- linear alkylbenzene (LAB)
 - compatible with acrylic, undiluted
 - high light yield, long attenuation length
 - safe: high flash point, low toxicity
 - cheaper than other scintillators
- physics goals: *pep* and *CNO* solar neutrinos, geo neutrinos, reactor neutrino oscillations, supernova neutrinos, double beta decay with Nd (C. Krauss, Taup 09)

$0\nu\beta\beta$ Signal for $< m_{\nu} > = 0.150 \text{ eV}$

• 0.1% natural Nd-loaded liquid scintillator in SNO+ \Rightarrow 56 kg of ¹⁵⁰Nd

• Future: use of enriched ¹⁵⁰Nd ?

Name	Nucleus	Mass*	Method	Location	Time line
	Running 8	c recently con	npleted experim	ents	
CUORICINO	Te-130	11 kg	bolometric	LNGS	2003-2008
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010
		Construction	n funding		
CUORE	Te-130	200 kg	bolometric	LNGS	2012
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2010 (commis.)
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (commis.)
LUCIFER	Se-82 (Mo-100)	18 (11) kg	bolom./scint.	LNGS	2013 (commis.)
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011
	Substar	ntial R&D fund	ding / prototypir	ng	
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009
Majorana	Ge-76	26 kg	ionization	SUSL	2012
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)
	R&I	D and/or conc	eptual design		
CARVEL	Ca-48		scintillation	Solotvina	
COBRA	Cd-116, Te-130		ionization	LNGS	
DCBA	Nd-150		drift chamber	Kamioka	
EXO gas	Xe-136		gas TPC	SNOlab	
MOON	Mo-100		tracking	Oto	
		Other decay	/ modes		
TGV	Cd-106		ionization	LSM	operational

B. Janutta F. Lück C. Oldorf T. Koettig O. Schulz N. Heidrich Τ. rmann

*: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90% 2010

COBRA: CdZnTe Semiconductor Detectors

Focus on ¹¹⁶Cd, Q-value: 2809 keV

Energy measurement only

Energy measurement and tracking

Underground setup at LNGS

(K. Zuber, Taup 2009)

COBRA as solid-state TPC:

Pixelisation can be used for background reduction by particle identification

Monte Carlo: 200 μ m pixel size

Real data: 55 μ m pixel size

Summary & Outlook

 $0\nu\beta\beta$ experimental strategy during the next decade

Outlook

ASPERA European strategy

ASPERA recommendation for Neutrino Mass:

Depending on the outcome of the present generation of double beta decay experiments being prepared, we recommend the eventual construction and operation of **one or two double beta decay experiments** on the **ton-scale**, capable of exploring the inverted-mass region, with a **European lead role or shared equally with non-European partners**. A decision on the construction could be taken around 2013.

LRP 2010

Similar financial efforts from North America & Japan required to realize ton scale experiments !

Extra slides

Many thanks to all colleagues & friends for providing up to date material!

Apologies to those whose projects could not be covered in this talk!

Name	Nucleus	Mass*	Method	Location	Time line				
	Operational	& recently co	ompleted experi	ments					
CUORICINO	Te-130	11 kg	bolometric	LNGS	2003-2008				
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010				
Construction funding									
CUORE	Te-130	200 kg	bolometric	LNGS	2012				
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2009 (comiss.)				
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (comiss.)				
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011				
	Substantial R&D funding / prototyping								
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009				
Majorana	Ge-76	26 kg	ionization	SUSL	2012				
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013				
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)				
	R&L	D and/or conc	eptual design						
CARVEL	Ca-48		scintillation	Solotvina					
COBRA	Cd-116, Te-130		ionization	LNGS					
DCBA	Nd-150		drift chamber	Kamioka					
EXO gas	Xe-136		gas TPC	SNOlab					
MOON	Mo-100		tracking	Oto					
		Other decay	/ modes						
TGV	Cd-106		ionization	LSM	operational				

*: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90%

⁴⁸Ca CANDLES.....

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matters by <u>Low Energy Spectrometer</u>

- undoped CaF₂ (CaF₂(pure))
 - ${}^{48}\text{Ca} (Q_{\beta\beta} = 4.27 \text{ MeV})$
 - Attenuation length > 10 m
 - Low radioactive impurities
- Low background detector
 - 4π active shield (LS)
 - Passive shield (Water, LS)
 - Pulse shape information
- Good energy resolution
 - large photo-coverage
 - Two phase LS system

....will illuminate Kamioka

305 kg (96 x 10^3 cm³ crystals) of natural-CaF₂ \Rightarrow 350 g of Ca-48

First PMT was installed at 24 June, 2009.

GERDA @ LNGS Commissioning started in autumn 2009

