

The GERDA neutrino-less double beta decay experiment

Stefan Schönert, MPIK Heidelberg for the GERDA collaboration

Workshop on Germanium-Based Detectors and Technologies

Berkeley, CA May 18-20, 2010

H. Aghaei^m, M. Agostini^f, M. Allardt^c, A.M. Bakalyarov^l, M. Balata^a, I. Barabanov^j, M. Barnabe-Heider^f, L. Baudis^q, C. Bauer^f, N. Becerici-Schmid^m, E. Bellotti^{g,h}, S. Belogurov^{k,j}, S.T. Belyaev^l, A. Bettini^{n,o}, L. Bezrukov^j, V. Brudanin^d, R. Brugnera^{n,o}, D. Budjas^f, A. Caldwell^m, C. Cattadori^{g,h}, F. Cossavella^m, E.V. Demidova^k, A. Denisiv^j, A. Di Vacri^a, A. Domula^c, A. D'Andragora^a, V. Egorov^d, A. Ferella^q, K. Freund^p, F. Froborg^q, N. Frodyma^b, A. Gangapshev^j, A. Garfagnini^{n,o}, S. Gazzana^{f,a}, R. Gonzalea de Orduna^e, P. Grabmayr^p, K.N. Gusev^{l,d}, V. Gutentsov^j, W. Hampel^f, M. Heisel^f, S. Hemmer^m, G. Heusser^f, W. Hofmann^f, M. Hult^e, L. Iannucci^a. L.V. Inzhechik^j, J. Janicsko^m, J. Jochum^p, M. Junker^a, S. Kionanovsky^j, I.V. Kirpichnikov^k, A. Klimenko^{d,j}, M. Knapp^p, K-T. Knoepfle^f, O. Kochetov^d, V.N. Kornoukhov^{k,j} V. Kusminov^j, M. Laubenstein^a, V.I. Lebedev^l, B. Lehnert^c, D. Lenz^m, S. Lindemann^f, M. Lindner^f, I. Lippi^o, X. Liu^m, B. Lubsandorzhiev^j, B. Majorovits^m, G. Meierhofer^p, I. Nemchenok^d, L. Pandola^a, K. Pelczar^b, F. Potenza^a, A. Pulliaⁱ, S. Riboldiⁱ, F. Ritter^p, C. Rossi Alvarez^o, R. Santorelli^q, J. Schreiner^f, B. Schwingenheuer^f, S. Sch"onert^f, M. Shirchenko^{l,d}, H. Simgen^f, A. Smolnikov^{d,j}, L. Stanco^o, F. Stelzer^m, M. Tarka^q, A.V. Tikhomirov¹, C.A. Ur^o, A.A. Vasenko^k, A. Vauth^m, O. Volynets^m, M. Weber^f, M. Wojcik^b, E. Yanovich^j, S.V. Zhukov^l, D. Zinatulina^d, F. Zoccaⁱ, K. Zuber^c, G. Zuzel^b,

^a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy ^b) Institute of Physics, Jagellonian University, Cracow, Poland ^c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany ^d) Joint Institute for Nuclear Research, Dubna, Russia ^e) Institute for Reference Materials and Measurements, Geel, Belgium ^f) Max Planck Institut für Kernphysik, Heidelberg, Germany ^g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy ^h) INFN Milano Bicocca, Milano, Italy ⁱ) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy ^j) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ^k) Institute for Theoretical and Experimental Physics, Moscow, Russia ¹) Russian Research Center Kurchatov Institute, Moscow, Russia ^m) Max-Planck-Institut für Physik, München, Germany ⁿ) Dipartimento di Fisica dell'Università di Padova, Padova, Italy ^o) INFN Padova, Padova, Italy ^p) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany ^q) Physik Institut der Universität Zürich, Zürich, Switzerland

~ 100 members 17 institutions 6 countries

UNIWERSYTET JAGIELLOŃSKI W KRAKOWIE

Jagiellonian University in Kraków, 18th-20th February 2008

Stelah Schuhelt, IVIFIN TERREBERY / SE-RELECTOR WORKSHOP, DETREEY, 10-20 IVIAY 2010

Outline

- The physics goals: brief introduction to neutrino-less DBD
- Characteristics of Ge-76 and sensitivity
- The experimental concept
- Background suppression techniques
- GERDA installations underground at LNGS
- Selected GERDA R&D topics
- Outlook

$0\nu\text{-}$ and $2\nu\beta\beta$ decay

2νββ: (A,Z) → (A,Z+2) + 2e⁻ + 2
$$\overline{\nu}_{e}$$
 ΔL=0
 $T_{1/2}^{2\nu} = (10^{18} - 10^{21})$ y

0 $\nu\beta\beta$: (A,Z) \rightarrow (A,Z+2) + 2e⁻ Δ L=2

Decay rate and effective neutrino mass

Assume leading term is exchange of light Majorana neutrinos

Expected decay rate:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_{ee} \rangle^2$$

Phase space integral

Nuclear matrix element

$$Q = E_{e1} + E_{e2} - 2m_e$$

Q-value of decay

 $\left\langle m_{ee} \right\rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$ Effective neutrino mass

 $U_{\it ei}$ (complex) neutrino mixing matrix

$0\nu\beta\beta$: physics implications

1) Dirac vs. Majorana particle: (i.e. its own anti-particle)?

• $0\nu\beta\beta \Rightarrow$ Majorana nature

• Majorana \Rightarrow See-Saw mechanism $\frac{1}{2}$

$$m_{\nu} = \frac{m_D^2}{M_R} << m_D$$

$$m_3 \sim \left(\Delta m_{atm}^2\right)^{1/2}, \ m_D \sim m_t \Longrightarrow M_R \sim 10^{15} GeV$$

• Majorana \Rightarrow CP violation in $M_{\mathbb{R}} \rightarrow$ higgs + lepton \Rightarrow Leptogenesis \Rightarrow B asymmetry

2) Absolute mass scale:

- Hierarchy: degenerate, inverted or normal
- (effective) neutrino mass

Predictions from oscillation experiments

Stefan Schönert, MPIK Heidelberg / Ge-detector workshop, Berkeley, 18-20 May 2010

Predictions from oscillation experiments

Stefan Schönert, MPIK Heidelberg / Ge-detector workshop, Berkeley, 18-20 May 2010

Characteristics of 76 Ge for $0\nu\beta\beta$ search

- Favorable nuclear matrix element $|M^{0v}|=3-9$
- Reasonable slow $2\nu\beta\beta$ rate (T_{1/2} = 1.4 × 10²¹ y) and high Q_{ββ} value (2039 keV)
- Ge as source and detector
- Elemental Ge maximizes the source-to-total mass ratio
- Industrial techniques and facilities available to enrich from 7% to ~88%
- Intrinsic high-purity Ge diodes
- HP-Ge detector technologies well established
- Excellent energy resolution: FWHM ~3 keV at 2039 keV (0.16%)
- Powerful signal identification & background rejection possible with novel detector concepts: time structure of charge signal (PSA), granularity (segmentation & close packing), liquid argon scintillation
- Best limits on $0\nu\beta\beta$ decay used Ge (IGEX & Heidelberg-Moscow) T_{1/2} > 1.9 × 10²⁵ y (90%CL) [& claim for evidence]

State-of-the-art: limits & claim

- 71.7 kg year Bgd 0.11 / (kg y keV)
- 28.75 ± 6.87 events (bgd:~60)
- Claim:4.2 σ evidence for $0\nu\beta\beta$
- (0.69–4.18) x10²⁵ y (3σ)
- Best fit: 1.19 x10²⁵ y (NIMA 522/PLB 586)
- PSA analysis (Mod. Phys. Lett. A21): (2.23 + 0.44 - 0.31)x10²⁵ y (6σ) Tuebingen/Bari group (PRD79): m_{ee} /eV = 0.28 [0.17-0.45] 90%CL

Significance and $T_{1/2}$ depend on bgd discription:

- Strumia & Vissani Nucl.Phys. B726 (2005)
- Chkvorets, PhD dissertation Univ. HD, (2008): using realistic background model

 \Rightarrow peak significance: **1.3** σ ,

 $\Rightarrow T_{1/2} = 2.2 \times 10^{25} \text{ y}$

State-of-the-art: limits & claim

- 71.7 kg year Bgd 0.11 / (kg y keV)
- 28.75 ± 6.87 events (bgd:~60)
- Claim:4.2 σ evidence for $0\nu\beta\beta$
- (0.69–4.18) x10²⁵ y (3σ)
- Best fit: 1.19 x10²⁵ y (NIMA 522/PLB 586)
- PSA analysis (Mod. Phys. Lett. A21): (2.23 + 0.44 – 0.31)x10²⁵ y (6σ)
- Tuebingen/Bari group (PRD79): m_{ee} /eV = 0.28 [0.17-0.45] 90%CL

Significance and $T_{1/2}$ depend on bgd discription:

- Strumia & Vissani Nucl.Phys. B726 (2005)
- Chkvorets, PhD dissertation Univ. HD, (2008): using realistic background model
- \Rightarrow peak significance reduced to 1.3 $\sigma,$

 $\Rightarrow T_{1/2} = 2.2 \times 10^{25} \text{ y}$

Background requirement for GERDA/Majorana:

⇒Background reduction by factor $10^2 - 10^3$ required w.r. to precursor exps. ⇒Degenerate mass scale $O(10^2 \text{ kg} \cdot \text{y}) \Rightarrow$ Inverted mass scale $O(10^3 \text{ kg} \cdot \text{y})$

'Bare' ^{enr}Ge array in liquid argon
Shield: high-purity liquid Argon / H₂O
Phase I: 18 kg (HdM/IGEX) / 15 kg nat.
Phase II: add ~20 kg new enr. Detectors; total ~40 kg

Array(s) of ^{enr}Ge housed in high-purity electroformed copper cryostat
 Shield: electroformed copper / lead
 Initial phase: R&D demonstrator

module: Total ~60 kg (30 kg enr.)

Physics goals: degenerate mass range Technology: study of bgds. and exp. techniques

open exchange of knowledge & technologies (e.g. MaGe MC)
 intention to merge for O(1 ton) exp. (inv. Hierarchy) selecting the best technologies tested in GERDA and Majorana

Background reduction:

Deep underground site for suppression of cosmic ray muons

Suppression of μ -flux > 10⁶

Background reduction:

graded shield against external γ , n, residual- μ

0vββ-signal recognition & background reduction

$0\nu\beta\beta$ -signal recognition & bgd reduction

internal bgds: e.g. ⁶⁰Co (5.3 a), ⁶⁸Ge (270 d), ... contaminations close by: e.g. U/Ra/Th in holders, cables, FE, ...

Unloading of vacuum cryostat (6 March 08)

Produced from selected low-background austenitic steel

Designed for external γ ,n, μ background ~10⁻⁴ cts/(keV kg y)

Ø 10 m H = 9.5 m V = 650 m³

clean room, active cooling device getting prepared for installation

Glove-box for Ge-detector handling and mounting into commissioning lock under N₂ atmosphere installed in clean room

LEOD

• Nov/Dec.'09: Liquid argon fill

• Jan '10: Commissioning of cryogenic system

• **Apr/Mai '10:** emergency drainage tests of water tank

• Apr/Mai '10: Installation c-lock

• **13. Mai '10:** 1st deployment of FE&detector mock-up (27 pF) - pulser resolution 1.4 keV (FWHM)

• **This week:** First deployment of nonenriched detector

• Next: Commissioning run with ^{nat}Ge detector string

• Subsequently: start Phase I physics data taking

GERDA Task Groups

- TG01 Modification & test of existing Ge diodes
- TG02 Design & production of new Ge diodes
- TG03 Front end electronics
- TG04 Cryostat and cryogenic infrastructure
- TG05 Clean room and lock system
- TG06 Water tank and water plants
- TG07 Muon veto
- TG08 Infrastructure & logistics
- TG09 DAQ electronics & online software
- TG10 Simulation & background studies
- TG11 Material screening
- TG12 Calibration
- TG13 Data management

Selection of R&D of GERDA Task Groups

- TG01 Modification & test of existing Ge diodes
- TG02 Design & production of new Ge diodes
- TG03 Front end electronics
- TG04 Cryostat and cryogenic infrastructure
- TG05 Clean room and lock system
- TG06 Water tank and water plants
- TG07 Muon veto
- TG08 Infrastructure & logistics
- TG09 DAQ electronics & online software
- TG10 Simulation & background studies
- TG11 Material screening
- TG12 Calibration
- TG13 Data management

Phase I detectors

p-type coaxial detectors

Bare Ge-diode

Low-mass holder

Detector handling under N₂ atmosphere

8 diodes (from HdM, IGEX):

- Enriched 86% in ⁷⁶Ge
- All diodes refurbished with new contacts optimized for LAr
- Energy resolution in LAr:
- ~2.5 keV (FWHM) @1.3 MeV
- Well tested procedure for detector handling
- Total mass 17.66 kg (after refurbishing)

6 diodes from Genius-TF natGe:

- Same refurbishing & testing as enriched diodes
- Total mass: 15.60 kg

R&D long-term stability of phase I detectors in LAr/LN₂

no deterioration after 1 year of operation in LAr M. Barnabé-Heider, PhD thesis '09

Test of full read out chain

Phase II detectors

Two technologies pursued:1) n-type segmented2) p-type BEGe

• 37.5 kg of 86% ^{enr}Ge (in form of GeO₂) stored underground

• 84 kg of depGeO₂ acquired (with same chemical history)

Reduction & purification:

- procedure tested and optimized with depGe at PPM Pure Metals GmbH
- no isotopic dilution
- short exposure to cosmic rays (underground storage)
- 29 Apr '10: purification of enriched material completed.
 ⇒ 35.4 kg (94%) of 6N (+ 1.1 kg tail = 97%)

Crystal pulling:

n-type for segmented detectors:

- R&D for n-type pulling by Institut für Kristallzüchtung, Berlin
- impurity concentration of 6.10¹⁰ cm⁻³ reached

p-type for BEGe detectors: 🗸

- deplGe from ECP purified at PPM successful
- Crystal pulling from deplGe material at Canberra, Oakridge, US
- first two deplBEGe detector working (Feb 2010)

 \Rightarrow C. Cattadori's talk

 \Rightarrow M. Wünscher

Phase II R&D: Novel Ge-detectors with advanced $0\nu\beta\beta$ -signal recognition & background suppression

Phase II R&D: Novel Ge-detectors with advanced $0\nu\beta\beta$ -signal recognition & background suppression

Phase II R&D: Novel Ge-detectors with advanced $0\nu\beta\beta$ -signal recognition & background suppression

R&D for Phase II/III: the GERDA-LArGe test stand at LNGS

First (& preliminary) results of a bare BEGe detector operated with liquid argon veto and pulse shape discrimination

r workshop, Berkeley, 18-20 May 2010

Summary & outlook

- Proposed in 2004
- Approved in 2005 by LNGS with location in Hall A
- Main funding sources: MPG, INFN, BMBF, DFG, SNF and Russia in kind
- Construction completed in LNGS Hall A
- Cryostat filled with LAr in Dec '09 & cryogenic commissioning completed
- First technical run: Mai '10
- Goals:

Phase I: background 0.01 cts / (kg keV y)

 \Rightarrow scrutinize KKDC results with ~1 year of data

 \Rightarrow T_{1/2} > 2.2 10²⁶ y, <m_{ee}> < 0.23 - 0.39 eV [PRC81 2010] Phase II: background 0.001 cts / (kg keV y)

 $\Rightarrow T_{1/2} > 1.5 \ 10^{26} \text{ y}, < m_{ee} > < 0.09 - 0.15 \ eV$ [PRC81 2010]

• R&D on liquid argon instrumentation \Rightarrow attractive method for 'background-free' 1 ton experiment

Extra slides

Comparison of DBD isotopes: Recent calculations of nuclear matrix elements

Is M decreasing with A^{-2/3} (IBM-2, QRPA) or constant with A (SM)?

Comparison of isotopes: Is there a *super-DBD-isotope* ?

Expected $0\nu\beta\beta$ rates per mass vary within a factor ~ 4 !

detector workshop, Berkeley, 18-20 May 2010

GERDA cryostat

- 65 m³ volume for LAr
- 200W measured thermal loss
- active cooling with LN₂
- internal copper shield
- detailed risk analysis of cryostat in 'water bath'

Screening of all stainless steel sheet batches by underground γ -spectroscopy at MPI-HD and LNGS prior construction \Rightarrow Th-228 <0.1 – 5, typically <2 mBq/kg

Stef

 $\begin{array}{l} \text{MC} \Rightarrow \text{cryostat} + \text{copper shield} + \text{LAr} \\ <2 \cdot 10^{\text{-4}} \text{ cts} \, / \, (\text{keV} \cdot \text{kg} \cdot \text{y}) \end{array}$

NIM A593 (2008) 448, NIM A606 (2009) 790

ey, 18-20 May 2010

Cryostat: Rn emanation

Measurements of Rn emanation ^(a) at various fabrication/installation steps with MoREx^(b)

after 1./2. cleaning 23 ± 4 / 14 ± 2 mBqafter copper mount 34 ± 6 mBqafter 3. cleaning 31 ± 2 mBqafter cryogenics mount 55 ± 4 mBq**

**evidence: ²²²Rn concentrated in neck!

Rn shroud: 30 µm copper Ø 0.8m , 3 m height to prevent convective transport of Rn from walls/copper to Ge diodes **BI ~ 1.5 10⁻⁴ cts / (keV · kg · y)**

(a) Uniform 222 Rn distribution of 8 mBq implies b = 10⁻⁴ cts/(keV kg y) in phase I.

^(b)Appl.Rad.Isot. 52(2000) 691

Cryostat filling with LAr in Nov/Dec '09

Cryogenic commissioning successful! Active cooling operational since Jan. '10, Stable operations - no loss of argon