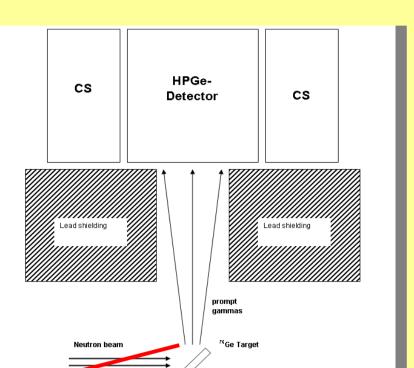


Neutron reactions on ⁷⁶Ge -**Background in** neutrinoless double beta decay experiments


G. Meierhofer, P. Grabmayr, and J. Jochum Kepler Center for Astro and Particle Physics, Universität Tübingen, Germany

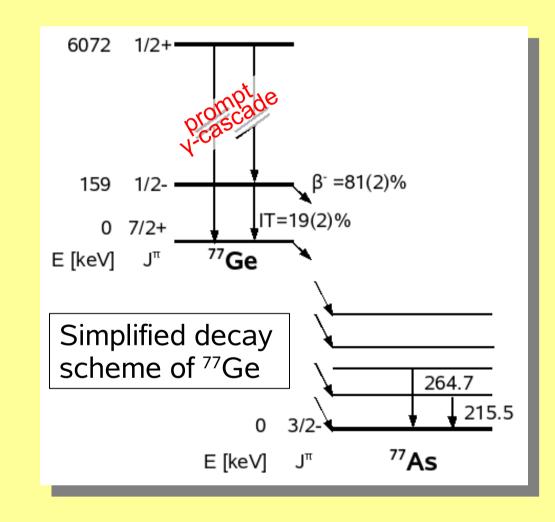
The search for the neutrinoless double beta decay $(0\nu\beta\beta)$ has been a very active field for the last decades. While the double beta decay $(2\nu\beta\beta)$ has been observed, $0\nu\beta\beta$ still waits for its experimental proof. The observation of $0\nu\beta\beta$ would be evidence for the Majorana nature of the neutrino. From the measured half-life the effective neutrino mass can be derived, if theory provides precise nuclear matrix

Experiments

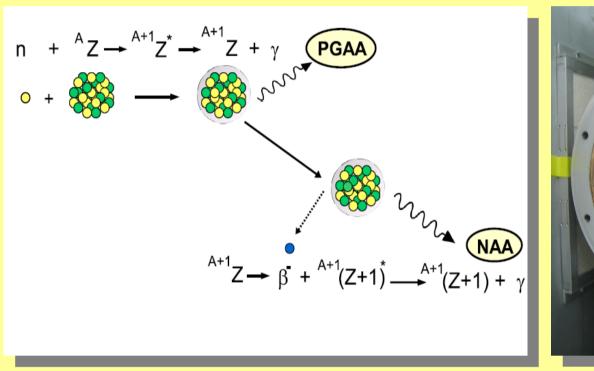
The cross sections and prompt γ -ray spectra of the (n,γ)-reaction of ⁷⁴Ge and ⁷⁶Ge were investigated at the facility for prompt gamma activation analysis (PGAA) at the research reactor FRM II near Munich, Germany. A maximum flux of 2.9x10⁹ neutrons/(cm² s) with a mean energy of 1.83 meV can be provided. For γ -ray detection two HPGe detectors are available.

⁷⁶Se

elements.


Energy [keV]

The GERDA (GERmanium Detector Array) experiment at the LNGS (Italy) searches for the neutrinoless double beta decay in ⁷⁶Ge. The isotope ⁷⁶Ge is an ideal candidate as it can be used as source and detector at the same time. The material used for the detectors is isotopically enriched in ⁷⁶Ge to a level of about 86%. Since half-lives of $0\nu\beta\beta$ are very long ($t_{1/2} > 1.6 \times 10^{25}$ y for ⁷⁶Ge) background reduction and rejection are the major task in neutrinoless double beta experiments. A background index of



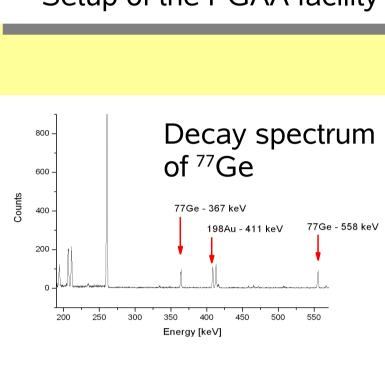
10⁻³ cts/(keV kg y) is required to meet the physics goals of GERDA (phase II).

⁷⁶Ge(n,γ)⁷⁷Ge

Neutrons produced by cosmic muons in the underground laboratory may be captured in the germanium detectors. The excitation energy of the ⁷⁷Ge (6071 keV) nucleus after neutron capture on ⁷⁶Ge is released by a cascade of prompt γ -rays. The following β -decay of ⁷⁷Ge (t_{1/2} = 11.3 h) and 77m Ge (t_{1/2} = 52.9 s) emits photons and electrons with energies above the Q-value for double beta decay ($Q_{\beta\beta}$ = 2039 keV). While photons can be rejected efficiently by pulse shape analysis, electrons have the same signature as $0\nu\beta\beta$ and can not be suppressed by this method. Monte-Carlo simulations result in a capture rate of

Setup of the PGAA facility

2νββ


^{′6}Ge

Cross section

Small targets of GeO₂, isotopically enriched in ⁷⁶Ge with a mass of about 500mg and known geometry were activated together with a piece of gold foil. After irradiation the decay spectra of ⁷⁷Ge and ¹⁹⁸Au were measured by HPGe detectors.

The thermal neutron capture cross sections of ⁷⁶Ge were calculated relatively to the very well known thermal cross section of Au comparing the intensity of γ -rays of ⁷⁷Ge with the peak area at $E_{\gamma} = 411$ keV of the gold reference. The uncertainties are dominated by the branching ratio of the isomeric state.

Analyzing the ⁷⁷Ge decay spectra it was found, that the emission probabilities given in literature are inconsistent with our measurement. The same discrepancy was observed by other groups in recent experiments. The cross sections for $^{74}Ge(n,\gamma)$ were determined in an analogous way.

Thermal cross sections for the ⁷⁶Ge(n, γ) and ⁷⁴Ge(n, γ) reactions.

() / -	
Isotope	Cross section (mb)
$\sigma^{e} \exp \sigma^{d}$ $\sigma^{d} direct$ σ^{m}	68.8 ± 3.4 46.9 ± 4.7 115 ± 16
⁷⁵ Ge σ ^e exp. σ ^d direct	497 ± 52 365 ± 51

 130.5 ± 5.6

FWHM=20ns

G. Meierhofer et al., Eur Phys. J A 40, 61 (2009).

Time between signals of detector

and detector II. The events in the peak correspond to true, events in

the continuous region are due to

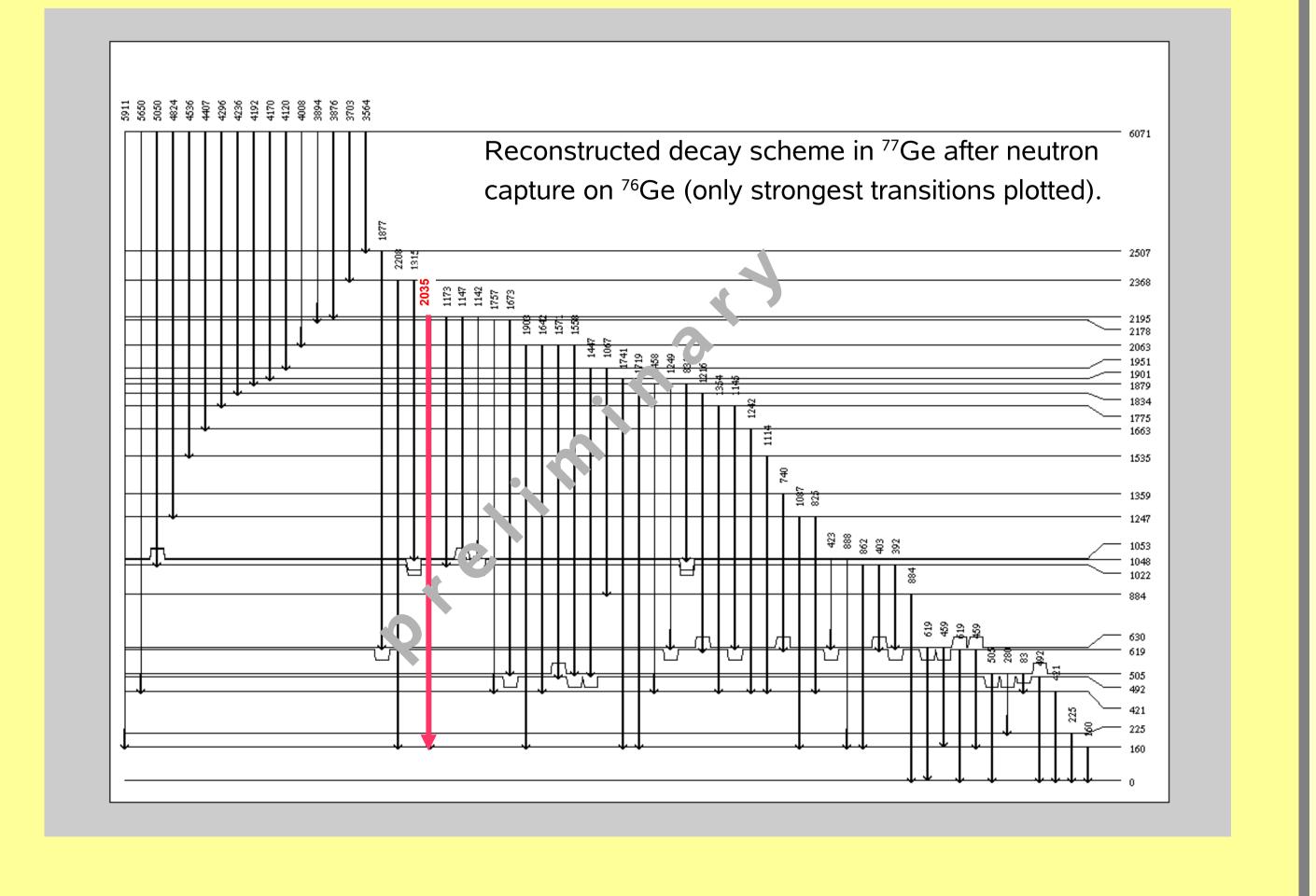
random coincidences.

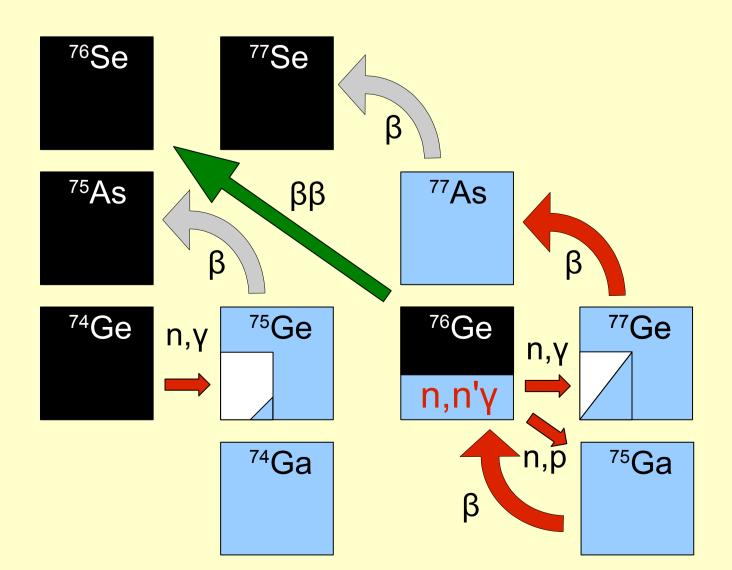
G. Meierhofer et al., PRC 81, 027603 (2010).

 σ^{m}

~1 n-capture/(kg y), a value comparable to the number of $0\nu\beta\beta$ decays expected in GERDA. The remaining contribution to the background index by β -decay of ^{77m}Ge is $1.8 \times 10^{-4} \text{ cts/(keV kg y)}.$

Veto for ^{77m}Ge decay


A possible veto strategy is the introduction of a sufficient dead time (e.g. t_{dead} = 4 min) after neutron capture. This veto can be triggered by the observation of the prompt γ -cascade. The trigger efficiency depends mainly on the knowledge of the prompt transitions in ⁷⁷Ge. Only two experiments measuring the prompt radiation in the 76 Ge(n, γ) 77 Ge reaction were performed in the past. Only 14 transitions were reported.


Prompt γ-rays

Samples of GeO₂ powder (m ~400 mg) with different isotopical composition were irradiated with cold neutrons for more than 50000 s. Comparing these spectra γ -rays in ⁷⁷Ge were unambiguously identified.

The very high neutron flux enabled the use of the two HPGe detectors in coincidence. From

these data the decay scheme after neutron capture could be reconstructed. In total over 120 transitions were found in ⁷⁷Ge after neutron capture on ⁷⁶Ge, including two lines at 2029 and 2035 keV.

Reaction	Energy (keV)	l _v (%)*
⁷⁶ Ge(n,γ ⁾⁷⁷ Ge		•
	2029	0.38
	2035	0.27
⁷⁷ Ge (β-decay)		
	2000.10	0.561
	2037.76	0.061
	2077.17	0.233
	2089.60	0.347
⁷⁶ Ga (β-decay)		
	2040.70	0.33
	2073.75	4.24
	2091.9	0.18
* per 100 interactions	5	

neutrons on ⁷⁶Ge

Reactions by fast

Fast neutrons induced by cosmic muons undergo additional reactions contributing to the background. ⁷⁶Ga nuclei can be produced from ⁷⁶Ge by fast neutrons with energies above the reaction threshold of 6.3 MeV. The cross section equals 2.5 mb at 14 MeV. ⁷⁶Ga decays after a short half-life time of 32.6 s back to ⁷⁶Ge. Photons and electrons of high energy (4.2 and 6.5 MeV resp.) are emitted.

Neutrons with energies exceeding 4 MeV are able to excite states in ⁷⁶Ge above 2039 keV by inelastic scattering.

Acknowledgement:

This work was supported by the German DFG (GRK683) and BMBF (05A08VT1).